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Abstract. A unique analytical solution of planet and star parameters
can be derived from an extrasolar planet transit light curve under a num-
ber of assumptions. This analytical solution can be used to choose the
best planet transit candidates for radial velocity follow-up measurements.
In practice, high photometric precision (< 0.005 mag) and high time sam-
pling (< 5 minutes) are needed for this method. See Seager & Mallén-
Ornelas (2003) for full details.

1. Assumptions

The following assumptions and conditions are necessary for a light curve to yield
a unique solution of planet and star parameters:
• The planet orbit is circular (valid for tidally-circularized extrasolar planets);
• Mp ≪ M∗ and the companion is dark compared to the central star;
• The stellar mass-radius relation is known;
• The light comes from a single star, rather than from two or more blended
stars;
• The eclipses have flat bottoms. This implies that the companion is fully
superimposed on the central star�s disk and requires that the data are in a band
pass where limb darkening is negligible;
• The period can be derived from the light curve (e.g., the two observed eclipses
are consecutive).
In this article M is mass, R is radius, ρ is density, P is period, a is orbital semi-
major axis, i is the orbital inclination, and G is the Gravitational constant.
Where required the subscript p is for planet, ∗ for stellar, and ⊙ for solar.

2. The Simplified Equations

Five equations are used to uniquely solve for M∗, R∗, a, i, and Rp. The simplified
equations presented below require the additional assumption that R∗ ≪ a.
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Transit depth
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Transit shape (tF = flat part of transit and tT = total transit duration)
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Kepler�s Third Law

P 2 =
4π2a3

GM∗

. (4)

Stellar mass-radius relation

R∗ = kMx
∗ . (5)

Here k is a constant coefficient for each stellar sequence (main sequence,
giants, etc.) and x describes the power law of the sequence (e.g., k = 1 and
x ≃ 0.8 for F�K main sequence stars (Cox 2000)). Note that Kepler�s Third
Law and the stellar mass-radius relation set a physical scale to two disks passing
in front of each other. This breaks the geometrical degeneracy and allows a
unique solution.

3. The Simplified Solution

The five parameters M∗, R∗, a, i, and Rp can be solved for uniquely from the
above five equations. Moreover, the impact parameter b ≡ a cos i/R∗ and stellar
density ρ∗ can be solved for uniquely without the stellar mass-radius relation.
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Figure 1. Stellar density ρ∗ vs. stellar mass M∗ (M∗ is used as a
proxy for stellar spectral type). See text for details. The box MOV
to F0V shows the main sequence stars which are most appropriate for
finding transiting planets. See Seager & Mallén-Ornelas (2003) for a
discussion of errors.

4. Application

The above analytical solution has many applications, all related to selecting the
best transit candidates for radial velocity mass follow-up. Here we only have
room to describe one application; for others see Seager & Mallén-Ornelas (2003).

The stellar density ρ∗ can be uniquely determined from the light curve
alone without using the stellar mass-radius relation, as seen from equation (7).
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A measured ρ∗ can be used in three ways. (1) From the light curve alone a
main sequence star and a giant star can be distinguished because main sequence
stars occupy a unique position in a ρ∗ vs. spectral type diagram (Figure 1).
Hence a giant star with an eclipsing stellar companion can be ruled out. (2)
From the light curve and the stellar mass-radius relation Rp can be estimated
(equation (12)). Even for slightly evolved stars an upper limit on R∗ and hence
Rp can be derived. (3) A possibly common false positive planet transit can be
ruled out by comparing ρ∗ derived from the light curve with ρ∗ derived from a
spectral type. If the two ρ∗ differ then something is amiss with the assumptions
in Sec. 1. The possibly common case is the situation where a binary star system
has its eclipse depth reduced to a planet-size eclipse due to the light from a
third, contaminating, star (Figure 2). For a real example of this �blended star�
situation, see Mallén-Ornelas et al. (2003).

Figure 2. A deep binary star eclipse (dotted line) can mimic a planet
transit (solid line) when extra light from a third, contaminating star
(not shown) is present.
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