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ABSTRACT. A computerized algorithm for the automatic detection of Cepheid variables and for the 
estimation of their periods, amplitudes, and mean magnitudes from sparse datasets is presented. It is 
intended to be suitable for use in such programs as the measurement of Cepheid distances to external 
galaxies, for example, with the Hubble Space Telescope. The reliability of the algorithm is tested by 
application to new photometric reductions of prerepair HST images of the nearby Sdm galaxy IC 4182, 
with comparison to published analyses of the same data (Saha, et al. 1994, ApJ, 425, 14). 

1. INTRODUCTION 

The launch and subsequent repair of the Hubble Space 
Telescope (HST) have led to a surge of interest in Cepheid 
variable stars as a means to calibrate the extragalactic dis- 
tance scale. Several teams are employing either HST or 
ground-based telescopes to detect Cepheids in external gal- 
axies, determine their periods and mean magnitudes, and 
infer the galaxies’ distances by comparison of their apparent 
period-brightness relation with the absolute period- 
luminosity relation measured in the Galaxy and the Magel- 
lanic Clouds (e.g., Sandage et al. 1992; Saha et al. 1994; 
Freedman et al. 1994; Pierce et al. 1994; Tanvir et al. 
1995). 

Modem detectors, both on HST and on the ground, obtain 
millions of pixels’ worth of data in a single brief exposure, 
and each observation can record tens of thousands of stars. 
To be sure, the photographic plates of fond memory can 
contain even more resolution elements than current CCDs, 
but such data are acquired in analog form and are most easily 
searched for variable stars by visual examination (“blink- 
ing”). (The comparatively low quantum efficiency of plates 
also helps to keep the data rate down to manageable levels.) 
Electronic images are more usually acquired and stored in 
digital form, and while they can be displayed and blinked as 
analog images—and it is instructive to do so—they are also 
well suited to analysis by more rapid, more impersonal, and 
less tedious automatic techniques. 

The “more rapid” and “less tedious” aspects of auto- 
matic data analysis speak for themselves, but the “more im- 
personal” part deserves some expansion. In discovering and 
measuring a sample of variable stars—such as Cepheids for 
the purpose of distance determinations—several different 
types of confidence in the results are desired. First, we wish 
to be confident that the star detected as a “variable” is a 
physical variable, and not merely displaying a time sequence 
of random noise or image contamination. Second, we wish to 
be confident that the type of variability is correctly identified, 
e.g., that the star is in fact a classical Cepheid variable as 
opposed to a Mira or an eclipsing binary. Third, we wish to 

be confident that the relevant parameters (viz., the period and 
mean magnitude in the case of a Cepheid) are correctly de- 
termined within known tolerances. And last, we wish to be 
confident that our sample is as complete as possible and— 
more important—is either unbiased with respect to the im- 
portant parameters, or subject to bias whose nature is quan- 
titatively known and can be allowed for. In the case of 
Cepheid distances, the sine qua non is a sample which, for 
some known range of period, fairly samples all luminosities 
that are possible at those periods. Biases in parameters of 
secondary importance, e.g., a bias against variables of low 
amplitude, can be tolerated to the extent that those secondary 
parameters are uncorrelated with luminosity, or to the extent 
that an identical bias operates in the reference sample of 
Galactic and Magellanic Cloud Cepheids. 

The human brain includes a wonderful image processor, 
and an experienced investigator can do a remarkable job of 
identifying true, physical variable stars under conditions of 
varying background and differing seeing. Then the expert 
astronomer can judge the correctness of a given trial period 
by the apparent “rightness” of the phased light curve. The 
personal biases of any given investigator are hard to define 
quantitatively, however, and the samples of variables that 
would be obtained from the same data by investigators of 
different experience levels or predispositions might be suffi- 
ciently dissimilar as to compromise the science goals of the 
study. It is not so much a question of whether different as- 
tronomers will discover different variables, but whether they 
will assign the same confidence level to the correctness of 
the classifications and periods: in other words, whether indi- 
vidual subjectivity will lead them to accept and reject the 
same dubious data points in the absence of some universally 
recognized, objective confidence criteria. A properly de- 
signed automatic algorithm could have its biases adequately 
mapped out by comparison with the discovery efficiency of 
one or more expert astronomers and also through the me- 
dium of tests on artificial variable stars digitally inserted into 
images of a star field. Then this algorithm could be used with 
equal facility, reliability, and repeatability by investigators of 
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all experience levels. By operating directly on measured 
magnitudes (whether instrumental or calibrated) and their as- 
sociated standard errors, an automatic digital algorithm can 
assign quantitative confidence levels to the various stages in 
the detection, classification, and measurement of a variable 
star. Without the dynamic-range limitations of the human 
eye and—most important—by considering simultaneously 
the whole corpus of observations of a given star rather than 
by a pairwise comparison of the images, the sensitivity of the 
algorithm to low-amplitude variables can be maximized. 

Welch and Stetson (1993; hereafter, WS) presented a 
simple algorithm for identifying highly probable variable 
stars from lists of (magnitude, error) data for stars observed 
numerous times. The method relied on a measurement of the 
time-dependent correlation of magnitude residuals: given a 
mean magnitude determined from a string of observations, 
do observations taken close together in time show differ- 
ences from that mean that are consistent to a statistically 
significant level? By scaling the residuals according to the 
quantitatively estimated standard error of each magnitude de- 
termination, the algorithm provides a numerical confidence 
index for the physical reality of the detection that is indepen- 
dent of magnitude, although, of course, the larger the random 
errors of the individual magnitude measurements, the larger 
the amplitude of physical variation required to achieve a 
given confidence level. Furthermore, an appropriate choice 
of the correlation statistic makes the method quite robust 
against the contamination and blunders inherent to real data 
(as distinguished from statistical idealizations): in particular, 
individual incorrect measurements tend to reduce the magni- 
tude of the WS numerical index, unlike some more venerable 
statistical indices such as overall magnitude variance. The 
WS technique is especially appropriate when the data are 
naturally paired as, for instance, when images were obtained 
in two photometric bandpasses or in cosmic-ray-split pairs 
each time the field was revisited. 

The present paper attempts to extend the general concept 
of impersonal digital methodology to the identification of 
Cepheid variables, in particular, and to the determination of 
their relevant physical parameters: period, phase, amplitude, 
and mean magnitude. It must be stressed that software 
“black boxes” will not supplant experienced astronomers in 
the foreseeable future. The technique described here repre- 
sents something much more modest than an attempt ‘ ‘to in- 
vent and implement a perfect procedure for the automatic 
detection and classification of variable stars” (anonymous 
referee). Rather, it represents än initial prototype with much 
shorter-term goals: (a) to serve as an additional, independent 
and objective, method of searching for variable stars to 
supplement (not, anytime soon, replace) currently accepted 
techniques; and (b) to help provide some insight into just 
where the essential information content of a string of photo- 
metric data lies. How can variable detection be optimized? 
When changing a particular criterion or parameter, does the 
method work better or worse? Can we understand why? How 
do the experts do what they do, and how can their skills be 
most effectively explained to novices? In the referee’s 
words, “The obvious power of independent analysis of a 
dataset by different scientists will vanish if we were to sim- 

ply and solely rely on the output produced by a software 
package.” 

In the present prototype, detection of variable candidates 
is based on a variant of the WS algorithm—it has been nec- 
essary to de-sophisticate it slightly to allow for the case 
where the data are not always taken in pairs, and to make it 
still more robust against the possibility of multiple corrupt 
observations. Then the recognition of a particular candidate 
variable as a candidate Cepheid and the subsequent estima- 
tion of its light-curve parameters is done through the tech- 
nique of template matching, since it has been shown that the 
shape of a Cepheid light curve is a nearly unique function of 
its period. Thus, the modified WS index provides the princi- 
pal measure of confidence that the variability is real, and not 
due to noise. The quality of the fit of the data to the template 
then provides a quantitative measure of confidence that the 
light curve is that of a normal classical Cepheid; the appro- 
priateness of the derived period, amplitude, magnitude, and 
color can provide secondary indicators of the correctness of 
the classification. Then, the availability of completely 
sampled template light curves optimizes the determination of 
flux-weighted mean magnitudes from datasets that may be 
sparse, may be poorly sampled in phase, and may consist of 
observations with significantly different standard errors. Fi- 
nally, the quality of the template fit also provides quantita- 
tive confidence intervals for the derived period and mean 
magnitude. Thus, each Cepheid that appears in a given tar- 
get’s period-magnitude relation can be given its own indi- 
vidual, numerical weight reflecting the probability that the 
variation is real, the likelihood that the classification as a 
Cepheid is correct, and the degree of confidence in the mea- 
sured values of the two relevant quantities. These properties 
make the proposed algorithm particularly promising for the 
analysis of Cepheid data from HST, where the scarcity of the 
resource encourages the smallest possible number of visits to 
the target; where the need to orient the solar panels limits the 
length of the observing season at any given telescope orien- 
tation; where a cosmic-ray event or detector blemish can 
corrupt the measurement of a variable candidate at any given 
epoch; where sating events can disrupt the most carefully 
optimized observing schedule; and where the need to work 
near the detection limit yields magnitude standard errors that 
change significantly from maximum to minimum light. At 
present, due to the immediate desire to cope with data from 
HST, the algorithm has been calibrated specifically to the 
photometric bandpasses Johnson V and Kron-Cousins /. 
Should future experience show the method to be efficacious 
and convenient, it can easily be extended to other band- 
passes. 

The use of the new algorithm will be illustrated by appli- 
cation to new reductions of the prerepair HST images of 
the nearby Sdm galaxy IC 4182, which was host to the type 
la supernova 1937C. These observations were obtained in 
1992 January through March and in 1993 January, during 
the course of program No. 2547, “Calibration of Supernovae 
of Type la as Standard Candles” (A. Sandage, principal in- 
vestigator). The 1992 data have previously been discussed by 
Sandage et al. (1992) and Saha et al. (1994), who employed 
a battery of both semiautomatic and personal techniques to 
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obtain and cross-check their variable candidate lists. The 
data from the 1993 revisit have not previously been studied, 
to the best of my knowledge. The extraction of instrumental 
magnitudes from the original images was done with all- 
frame (Stetson 1994), using the same methodology and 
model point-spread functions as were used by Freedman et 
al. (1994). 

2. IDENTIFYING CANDIDATE VARIABLES 

The Welch/Stetson variability index I is defined by the 
equation 

/= 
b-b 

<*b,i 

where b¡ and are the apparent magnitudes obtained for the 
candidate star in two observations closely spaced in time on 
some occasion i, ab i and av i are the standard errors of 
those magnitudes, b and v are the weighted mean magni- 
tudes in the two filters, and n is the number of observation 
pairs. This notation is rooted in the assumption that on each 
visit to the program field a single pair of observations in the 
B and V photometric bandpasses is obtained. The method 
would work equally well if two observations in the same 
bandpass were obtained at each visit—as in cosmic-ray split 
pairs obtained with HST. In this case, b = v may be taken to 
be the mean of all 2 n observations, rather than the means of 
two different samples each of size n. WS showed that this 
formulation is both effective in identifying variables, and 
robust against a small number of corrupt observations: a 
single observation with an inordinately large residual actu- 
ally tends to drive the index toward a slightly smaller value 
(i.e., makes the star less likely to be flagged as a variable), 
unless of course a second blunder of the same sign is made in 
the other observation of that pair. 

In images obtained with WF/PC or WFPC2 on HST, how- 
ever, stellar images damaged by cosmic rays, warm pixels, or 
other blemishes are sufficiently common that it seems worth- 
while to modify the WS index to make it still more robust 
against defective data. At the same time, it is necessary to 
generalize the formulation to allow the inclusion of data 
from visits where only a single frame was obtained (not all 
HST data are taken as cosmic-ray splits) or where more than 
two observations were made in close succession. A more 
robust version of the index is 

2¡Uw¡fcSgn(P*)VÍP*í m 

^k=iwk 

where the user has defined k pairs of observations to be 
considered, each with a weight wk; Pk=^m^j(k) is Üie 

product of the normalized residuals of the two observations, 
i and j, constituting the kth pair; and S is the magnitude 
residual of a given observation from the average of all ob- 
servations in that same bandpass scaled by the standard error 
(= {v-v)!(tv , for instance); I adopt this modified notation 
to remove the implication that the observations in a pair will 
necessarily be in different filters. In fact, it is not quite opti- 
mal to define S to be the residual of one magnitude measure- 
ment from the mean of all measurements in that filter. Be- 

cause that observation itself has been used in defining the 
mean of all observations, the residual from the sample mean 
is expected to be smaller, on average, than the residual of an 
observation from “truth” by a factor that depends upon the 
number of observations in the sample. Any basic statistics 
text will show that the size of this bias is yl(n—l)/n, where 
n is the total number of observations contributing to the 
mean. Since a given frame pair may include data from two 
filters which did not have equal numbers of observations 
overall, I can therefore define the “relative error” 

Vn v — v 
 r , n — 1 av 

and so on, thus allowing all residuals to be compared on an 
equal basis. This is the definition of S which will be used in 
all that follows. 

On a visit to the program field where a single pair of 
frames was obtained, i(k) and j(k) will naturally point to the 
two magnitudes derived from those two observations; the 
weight wk of such an observation pair may be taken to be 
unity. In a dataset consisting of magnitude pairs with purely 
random noise, the expectation value is zero; thus J 
should tend to zero for a nonvariable star, and will tend 
toward some positive number for a physical variable. How- 
ever, if only a single exposure was obtained on some occa- 
sion, we could set i{k)=j{k), contributing the square of the 
relative error of that one observation to the summation. In 
the limiting case where only single observations were ob- 
tained at the different epochs, J would then reduce to a ro- 
bust measure of the standard deviation of the observed mag- 
nitudes relative to that expected from the errors of the 
individual observations: a measure of the external repeatabil- 
ity relative to the internal precision. In a random dataset 
containing purely single observations with known standard 
errors, the expectation value (<$?) is unity. It is therefore 
necessary to subtract this offset to render the expectation 
value for single observations containing only random noise 
equal to zero, the same as for paired observations; 

if i(k)±j(k); 
Pk ifi(k)=j(k). 

Otherwise, a given quantitative value of J would mean very 
different things for stars contained in different numbers of 
paired and single exposures. The weights wk of single obser- 
vations may be taken to be unity if all observations are 
equally valid, because the ratio of external repeatability to 
internal precision is itself an efficient index of variability in 
the absence of corrupt data. However, if corrupt observations 
are common, it may be desirable to assign reduced weight to 
a singleton observation, because the square of a botched 
magnitude will necessarily make a large positive contribu- 
tion to the index. 

Conversely, if more than two observations are all ob- 
tained within a time span < the shortest periodicity being 
sought, individual observations may be included in more 
than one pair. For instance, three closely spaced observations 
abc may be distributed into the three pairs ab, be, and 
ac, with two-thirds weight being assigned to each pair so 
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that in the aggregate they contribute double weight (as a 
variance determined from three observations carries twice 
the weight of a variance estimated from only two). 

As one step in the robustification of the new index, the 
average magnitude used here is no longer the simple 
weighted arithmetic mean of all observations in a given 
bandpass; it is a robust mean based on the numerical gim- 
mick discussed before by Stetson (1987, Sec. Hl D 2 d\ and 
1989, Chap. 3 B): after an initial determination of the 
weighted mean has been made, stars are reweighted accord- 
ing to the size of their residuals. The stars’ weights are mul- 
tiplied by a factor 

and the mean is redetermined with the new weights. The 
procedure is iterated until the mean and the individual 
weights stabilize. The same technique is also used to render 
the template light-curve fits discussed below robust against 
corrupt observations. I prefer this approach to the much more 
widely adopted lika clipping” for several reasons. Most im- 
portant, with small datasets her clipping can hold an entire 
dataset hostage to a single observation: if the rejection 
threshold is set at 3 a, then clipping will accept an observa- 
tion with a 2.99<t residual, and accord it unit weight. Con- 
versely, it will reject an observation with a 3.01 cr residual, 
giving it zero weight. Thus, an insignificant change in a 
single datum—and that datum already somewhat suspect to 
begin with—can make a significant change in the final an- 
swer. This is an undesirable property in an algorithm. By 
smoothly tapering the weights from unity for <5=0 to zero 
for <5—->°° one ensures that a small change in any one datum 
will always lead to a tiny change in the answer. Second, 
clipping can make the ultimate iterated solution to a nonlin- 
ear problem dependent on the input starting guesses for the 
fitting parameters: if the initial model identifies a particular 
observation as erroneous, the observation is ignored and may 
never influence the final result, whereas if the initial model 
happened to pass near that point, it is given unit weight and 
is allowed to attract the solution still closer. With continuous 
weights, even an outlying observation exerts some minor at- 
traction on the solution, and the final answer is achieved by 
balancing the weighted pulls exerted by all the data. I do not 
believe that this approach can be justified analytically from 
first statistical principles—indeed, unless the true form of the 
error distribution (including small, Gaussian error contribu- 
tors and large, non-Gaussian blunder contributors) is known 
in quantitative detail, no algorithm can be proven to be op- 
timal. The most I can say is that this approach has certain 
philosophically desirable properties, and appears to work as 
well as can be expected under the circumstances. For my 
present purposes, I have adopted a = b = 2. Extensive experi- 
mentation with artificial corrupt datasets (op. cit.) indicates 
that the efficacy of the method is not very sensitive to these 
quantities. Note that the square root inside the upper summa- 
tion of Eq. (1) renders the index still more robust by reduc- 
ing the impact of extreme outliers relative to that of more 
typical residuals. 

A value for J may be quickly computed for every star 
measured in an ensemble of images; those with the largest 
values of J are the most probable variables. However, when 
the number of independent observations is small and the pos- 
sibility of corrupt data is non-negligible, it is useful to have 
some backup measure of the way the observed magnitudes 
are distributed between the maximum and minimum values. 
For instance, if a light curve were a pure noiseless sawtooth, 
then all magnitudes between the maximum and minimum 
would be equally likely; if the light curve were a pure sinu- 
soid, values near the extrema would be more probable than 
values near the mean; for a constant star subject to Gaussian 
errors, magnitudes near the mean would be more likely than 
near the extrema; and for a constant star with one corrupt 
observation, values near the robust mean would be very 
common, and there would be a single remote outlier. I there- 
fore take as my backup index a robust measure of the kurto- 
sis of the magnitude histogram: 

1 IN 2f=1|<5¿| 
K= (2) 

yJl/N 2^ <5? 

where in this case the index i runs over all N observations 
available for the star without regard to pairing. It may easily 
be shown that, in the limit where the total range of variation 
is vastly larger than the cr’s of the individual observations, 
for a hypothetical square-wave light curve K= 1.0; for a pure 
sinusoid K—> yjs/'rr= 0.900; for a sawtooth (uniform distri- 
bution of magnitude probabilities) K—► VÏ2/4= 0.866; for a 
Gaussian magnitude distribution K-+ ^2/tt=0.798; and for a 
single measuring blunder of size A, K=(\A\/N)/y[KT/N 
= 1/VÑ-* 0 as iV—>°°. In the other extreme, where indi- 
vidual random measuring errors dominate over the physical 
variation, the Gaussian limit is approached; K—>0.798. We 
can therefore make our algorithm more capable of distin- 
guishing desirable types of variation from undesirable ones 
by letting our provisional index be 7ÄY0.798; this will be 
numerically equal to J when the nature of the perceived 
variation is Gaussian (e.g., the observational errors have 
been underestimated, for instance, or a star varies errati- 
cally), but it will be amplified by a small factor for typical 
smoothly varying light curves, and suppressed by a large 
factor for extreme but infrequent discrepant magnitudes 
(e.g., some data are corrupt, or the candidate is a widely 
detached eclipsing binary). 

Finally, a purely practical consideration: in determining 
the distance to a galaxy from Cepheid light curves, we are 
most interested in stars with the largest possible number of 
observations. When a star is absent from one or more images 
of a given field, this is likely to indicate a problem: the star is 
near the edge of the frame or near a detector blemish, so 
minor pointing changes cause it to be lost sometimes; or it is 
very near the detection limit. Therefore, we can multiply our 
variability index by a further factor of 2wlw^, where is 
the total weight a star would have if successfully measured 
in all frame pairs. This way, when a set of candidate variable 
stars is selected from the corpus of data corresponding to a 
given target field, those candidates that were successfully 
measured the most times will be the first to be followed up. 
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The final variability index proposed here is thus 

_/ JK \ /2w 
Mom) (3) 

A value for L can be determined for every star in the pro- 
gram field having some minimum total weight 

in), and stars exceeding some threshold value of 
L may be subjected to period searches and light-curve fits. 

3. FITTING THE TEMPLATE LIGHT CURVES 

Before the template Cepheid light curves (see the Appen- 
dix) can be fit to the data for a given star by iterative linear- 
ized least squares, it is necessary to come up with initial 
guesses for the period and phase of the variation, because the 
equations are nonlinear in these quantities. I adopt a period- 
finding algorithm which is a variant of the Lafler-Kinman 
(1965) string-length technique. Their principal formula for 
evaluating the quality of any given trial period was 

Sf=l(m-ffl;+l)2 

where the N individual magnitude observations m have been 
sorted in order of increasing phase according to the trial pe- 
riod, and for phase closure mN+i = mi. The numerator of the 
fraction is a measure of the length of “string” that would be 
required to connect the points in order of phase, while the 
denominator is a standard measure of the width of the mag- 
nitude histogram without regard to phasing. The “best” pe- 
riod for some candidate variable is that for which 0 is mini- 
mized, and if that minimum value of 0 is sufficiently small 
compared to unity, the physical reality of the variation may 
be taken as likely. The Lafler-Kinman index—unlike some 
alternative methods, such as certain implementations of 
phase-dispersion minimization (e.g., Stellingwerf 1978)— 
does not employ any binning of the data, but rather treats 
each observation on its own. This may be an advantage for 
many modem studies, where the number of independent ep- 
ochs may be small (of order 10-20). 

However, some adjustments to the Lafler-Kinman for- 
mula may be envisioned to make it more robust against a 
small admixture of corrupt data. The first of these is straight- 
forward: replace the squares of the magnitude differences in 
the summations with the absolute values of those differences. 
This has the usual effect of suppressing the importance of the 
most extreme outliers relative to more “typical” differences. 
Second, it is necessary to make allowance for the fact that 
the standard errors of the individual observations may differ. 
Unlike the classical studies where variable stars were inves- 
tigated with photomultipliers or photographic plates and ex- 
posure times could be chosen to make the signal-to-noise 
ratio of the measurement comparable at all phases, in the 
type of work contemplated here some of the variable candi- 
dates may be near the detection limit, so the standard error of 
the magnitude is a strong function of phase. Clearly, a large 
difference between two poorly determined magnitudes is of 
less consequence than the same difference between two well- 
determined ones. The answer is to weight the magnitude dif- 
ferences by the standard errors of the constituent magnitudes. 

Finally, it is necessary to note that with a small number of 
observations for any given variable candidate, it is not pos- 
sible to insure that the entire cycle is fairly sampled—for any 
given trial period there may be sizeable gaps of phase with 
no observations. Therefore I adopt a scheme where the 
weight of a given term in the sum is multiplied by a quantity 
~(0i+1-0/)

_1, where <¡>= (¿¿-i^/P, under the assump- 
tion that a large magnitude difference between observations 
that are closely spaced in phase is important evidence that 
the trial period is wrong (and therefore should make a large 
contribution to the string length) whereas a large magnitude 
difference between observations at widely separated phases 
is not as strong evidence that the postulated period is incor- 
rect. I therefore adopt the formulation 

2f=1w(M+l)|m-mi+)| 
()“ Sf=1w(M+1) 

(4) 

where 

w(i,i+1)= 
o?+oi (<h+i~<k)+€ 

An identical formula has been independently developed by 
Freedman and Madore (in preparation). The softening pa- 
rameter e is required to keep two observations that happen to 
fall at the same phase from having infinite weight. It seems 
adequate to take e= 1/A, so if identical-phase observations 
have unit weight, two observations separated by the average 
phase, spacing will have half-weight. Because the purpose 
here is solely to sort out which possible periods are of the 
greatest interest for a given variable candidate, the normal- 
ization factor represented by the denominator of the Lafler- 
Kinman ratio is omitted here; the role of a numerical index 
quantifying the likelihood of the physical reality of the pro- 
posed variation is taken instead by the index L defined 
above. Thus, for various trial periods, values of S are calcu- 
lated, and up to 20 of the deepest local minima of the func- 
tion S(Pj) are retained in a data array, for S(Pj) less than 
some lintel (opposite of “threshold”) value. In my current 
implementation, the minimum period to be tested is specified 
by the user; it was found in early trials that when the number 
of epochs sampled is small (e.g., ^20), then testing periods 
that were too short (compared to that given, for instance, by 
the Nyquist frequency corresponding to the shortest interval 
between successive revisits) resulted in testing very many 
possible permutations of the data points. This frequently led 
to spuriously attractive light curves, just from the possibility 
of accidentally arranging observations in order of a progres- 
sion of random magnitude errors. Therefore the astronomer 
is required to exert some modicum of physical sense: in par- 
ticular, not searching for variables with periods less than X 
days in galaxies where such Cepheids should be far too faint 
to detect. This will result in missing some other types of 
short-period variables, such as eclipsing binaries, but this is a 
loss that can often be accepted. Starting with the minimum 
desired period, successive trial periods are chosen such that 
the change in phase of the last observation of the series rela- 
tive to the first is equal to 0.02: 
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where A t is the total amount of elapsed time between the 
first and last observation of the series; the maximum period 
considered is At or 100 days, whichever is less; and the 
largest local minimum value of the string length retained as 
a possible period is taken to be the mean value S, averaged 
over all trial periods. After all periods corresponding to local 
minima in the string length meeting the above criteria have 
been located, they are sorted in order of increasing string 
length, and the periods corresponding to the 20 shortest 
strings are subjected to template light-curve fits. 

Before the fits can proceed, however, for each of the pos- 
sible trial periods P for a given variable candidate, it is also 
necessary to obtain an initial guess at the time of zero light- 
curve phase, since the fitting equations are nonlinear in this 
quantity, too. This is done in a simple and crude way by the 
solution of the linear least-squares problem, 

m^niQ+a cos(o)i)+b sin(a>¿), 

where for my present purpose cùi=2'rr<j)i = 2'ir{ti-tl)IP. 
This yields the (crudely) estimated epoch of minimum visual 
light in the fundamental harmonic as 

i0=ii+Ptan-1(Z?/fl)/27T. 

Clearly, this is not a correct estimate of the zero epoch for a 
light curve that is not a simple sinusoid. But provided careful 
note is taken of the signs of a and b, it does yield an estimate 
that at least is in the right quadrant, which is all that is 
required. The solution also yields starting guesses for the 
mean magnitude (m0) and semiamplitude (yja2 + b2) of the 
light curve. It should be remembered that this least-squares 
fit and the subsequent, more sophisticated, fits of the light- 
curve templates are rendered robust against corrupt data by 
the iterative reweighting method outlined above. 

Finally, the observed data for each candidate variable can 
be fitted to the family of template light curves (see the Ap- 
pendix): for each trial period generated by the string-length 
algorithm, the V-band and I-band light curves of appropriate 
shape are computed from the template relations, and the so- 
lution is iterated to optimize the determinations of the five 
fundamental parameters: V0, 70, P, A, and t0. If observa- 
tions in the two filters are comparable in terms of number 
and quality, they both contribute to the determination of pe- 
riod, fundamental-frequency visual semiamplitude, and ep- 
och of zero phase; the relative importance of I compared to 
V is reduced only by the factor —0.6 representing the ratio of 
the /-band amplitude relative to that in V. If—as is the case 
with many HST programs—observations in V greatly out- 
number those in /, the former will dominate the choice of the 
suitable template, and the latter will primarily determine /0 

alone. 
The calibration of the instrumental magnitudes to the 

standard system occurs simultaneously with the light-curve 
fits. Having read in the appropriate zero points and color 
transformations, the program uses the provisional light 
curves in V and I to predict the color that the star should 
have at each given epoch; the instrumental magnitude corre- 

sponding to that instant of time is then transformed to the 
standard photometric system using the color transformation 
appropriate to that bandpass. When this has been done for all 
the observations, the residuals from the provisional V and I 
light curves are used to compute incremental corrections to 
the mean magnitudes, the period, the amplitude, and the ep- 
och of minimum light in the fundamental harmonic of the 
Fourier expansion for V (my working definition of zero 
phase). The newly tweaked light curves are then used to 
recompute the predicted standard-system magnitudes and 
color at each epoch, and the whole process iterates to con- 
vergence. Thus, the actual predicted color of the variable at 
each epoch is used in the photometric transformation, not 
some mean color. When the solution has converged, the tem- 
plate light curves are used to predict the stars’ magnitudes in 
V and I at each 0.01 of phase, these are converted to fluxes, 
and the flux-weighted mean magnitudes are computed from a 
simple trapezoidal-rule numerical integration. This method 
thus is minimally sensitive to a few spurious magnitudes, to 
a poor distribution of observations over phase, or to obser- 
vations that are not simultaneous in the two photometric 
bandpasses. 

Least-squares template fits are undertaken for all trial pe- 
riods representing local minima in the string length, begin- 
ning with the starting guesses associated with the shortest 
string and working up toward the longest string-length re- 
tained. The choice of the best light curve from the up to 20 
possibilities that were examined for each star is based on a 
simple scoring scheme. Features indicating a maximally de- 
sirable fit are: (1) the smallest possible standard error of unit 
weight after subtracting the template light curve from the 
phased data points; (2) the largest possible total weight in the 
solution (i.e., the smallest possible reduction in the weight of 
the observations by the residual-reweighting scheme alluded 
to above); and (3) a fitted amplitude most nearly appropriate 
to a Cepheid variable. As regards point (3), I originally con- 
sidered that the largest possible fitted amplitude would be a 
reasonable indicator of the best light-curve fit, under the 
assumption that incorrectly phased observations should 
lead to a light curve with a small net amplitude and large 
scatter. This turned out to be a mistake. With a compara- 
tively small number of observations, especially when the 
computer program was allowed to consider periods shorter 
than that given by the Nyquist frequency, it was very easy to 
find a trial period and time of minimum brightness that 
would concentrate the observational epochs near phases 0.25 
and 0.75, with no good constraint on the actual values of 
maximum and minimum apparent magnitude near phases 0.0 
and 0.5. Light curves of extremely large amplitude could be 
consistent with these datasets, even though the actual ob- 
served magnitudes showed no such range of variation. (In 
this context, “very easy” means that such spurious fits 
would occur a few times per thousand stars, which is com- 
parable to or larger than the actual expected frequency of 
true Cepheids.) I therefore decided to adopt a scheme that 
would reject amplitudes that were unphysically large as well 
as uninterestingly small. Since the sample of Milky Way and 
Magellanic Cloud Cepheids which were used to define the 
template light curves were wholly contained within the inter- 
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val 0.194^4=^0.587, the score assigned to a given ampli- 
tude was 

s={l+[log(A)+0.46]/0.3}-6. 

Thus, a trial light curve with an amplitude of 10 0 46= 0.35 
mag receives a score of unity; amplitudes of 0.2 and 0.6 mag 
are both assigned a score of 0.80; a score of 0.5 is assigned 
when I log(A)—0.46| = 0.3—that is, for A = 0.17 and 0.69 
mag; and from there the score tapers smoothly and rapidly to 
0.0 as A —>0 or A—>oo. The total score assigned to any fitted 
light curve is then 

score= 
m.^.l(min) 

m.e.l 
wt 

wi(max) ¿(max) 

where the (min) and (max) values represent the minimum 
and maximum observed values of those statistics among the 
various provisional light-curve fits for a given star. A score 
of 1.0 indicates that a given template fit is the best one in all 
three categories, and is highly desirable; a highest observed 
score less than unity for a given star indicates that, while it 
may be the best overall fit, it is not the best according to all 
three criteria. The ratio of the score of the second-best fit to 
that of the best fit, which I denote R2,\, is a quantitative 
indicator of the possibility that a false period has been ac- 
cepted: one may assume this probability is 50-50 if the top 
two fight curves have equal scores, and decreases to zero as 
this ratio goes to zero. This business of scoring the alterna- 
tive fight curves is the most highly experimental part of the 
whole automated procedure, and the most likely to be ca- 
pable of substantial improvement. 

As I undertook the reanalysis of the observations of 
IC 4182 that are described in the next section, I found 
that very often solutions originating from two different 
local minima of the string length would converge to the 
same solution. Furthermore, several different but very simi- 
lar fight curves could often be derived from the data for a 
given star, due to the possibility of different cycle counts 
across sizeable time gaps in the observational sequence, and 
sometimes due to the freedom to make different choices of 
possibly spurious observations for downweighting. There- 
fore I modified the program to make it not report a possible 
solution when an equal- or higher-score solution within 
6% of the same period (0.025 in the base-ten logarithm) 
had already been found. Similarly, I had it not report a solu- 
tion when another fight curve within one standard error in 
magnitude, period, amplitude, and phase had an equal or 
higher score. 

4. EXAMPLE: IC 4182 

A field in the dwarf irregular galaxy IC 4182 was ob- 
served with the Hubble Space Telescope on 20 occasions 
between 1992 January 27 and 1992 March 13 (Sandage et al. 
1992; Saha et al. 1994), and once again on 1993 January 24. 
On two of the 1992 visits and on the sole 1993 visit, 
a cosmic-ray split pair of V (F555W) and a pair of 
7 (F785LP) images were obtained; on 17 of the 1992 visits 
a pair of V frames only was obtained; and on one of the 
1992 visits the first planned V observation failed, resulting in 
a singleton observation at that epoch. 

The photometric reduction of these data was per- 
formed with allframe (Stetson 1994), using the same 
point-spread functions for the various chip-filter combina- 
tions as were employed by Freedman et al. (1994) and 
Hughes et al. (1994) in their studies of WF/PC images of 
M81=NGC 3031. I employed essentially the same color 
calibration as was employed by Saha et al., except that for 
compatibility with my usual software packages, it was nec- 
essary to invert (approximately) their relations from 

V=F555W—0.0679(F555W-F785LP) 

+0.0198(F555W-F785LP)2, 

7=F785LP+0.0485(F555W-F785LP) 

+0.0268(F555W-F785LP)2 

to 

F555W=V+0.077(V-7)-0.023(V-/)2, 

F785LP=7—0.055(V—/) —0.030(V-/)2. 

I did not attempt to derive aperture corrections or fundamen- 
tal zero points for my reductions; instead I worked directly 
from the PSF-fitting magnitudes and arbitrarily adjusted my 
zero points to yield approximate agreement, in the mean, 
with the Cepheid photometry of Saha et al. I have made no 
attempt to establish a true magnitude scale independently of 
that of Saha et al., and this paper should not be taken to 
represent a redetermination of the distance to IC 4182. 

For the variable-star search I defined the image pairs in 
the obvious way, with same-visit same-filter observations be- 
ing matched with each other, while the singleton V observa- 
tion was paired with itself and given half-weight in compari- 
son to the true-pair epochs. The immediate analysis is 
limited to just the 1992 data for the most meaningful com- 
parisons with the prior work of Saha et al.; later, I will repeat 
parts of the present discussion including the 1993 visit. Fig- 
ure 1 illustrates the values of the variability index L plotted 
against apparent V magnitude for all stars in the four WFC 
chips that were successfully measured in at least 16 of the 19 
frame pairs from 1992. Fits to template fight curves were 
attempted for all stars observed in at least 16 frame pairs and 
having values of L in excess of 0.9. String lengths were 
determined for trial periods ranging from 2.0 days to the 
length of the interval between the first and last observation, 
46.2 days. During the robust, least-squares template fits, 
however, solutions were allowed to converge to values out- 
side this range. 

I remind the reader that the template fight curves are not 
actually defined for periods less than 7 days (see the Appen- 
dix). Data for candidate variables with provisional periods 
shorter than this are actually fitted to simple sinusoids with 
equal amplitudes in V and 7. This could be justified by the 
assertion that in more remote galaxies, variables with periods 
less than 7 days are likely to be comparable-mass eclipsing 
binaries, or that in nearby galaxies the shortest periods be- 
long to overtone pulsators which tend to have more sinusoi- 
dal fight curves. Really I adopted this stopgap due to the lack 
of any obvious alternative. While not providing a truly accu- 
rate representation of a Cepheid fight curve, this approxima- 
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tion does nevertheless provide periods and mean magnitudes 
that are precise enough to be of interest. Similarly, the tem- 
plate light curves have not been defined for periods longer 
than 100 days. A variable with a candidate string-length pe- 
riod less than 100 days, but whose template-fitting solution 
converged to a period in excess of 100 days, was fitted with 
an extrapolated template. Similarly, a variable whose string- 
length period was greater than 7 days but which converged 
to a shorter period was likewise fitted with an extrapolated 
template, while a variable with a string-length period below 
7 days which converged to a greater period continued to be 
fitted with a sinusoid. This approach was adopted for a prac- 
tical reason: it is possible that for a given dataset a sinusoidal 
fit would converge to a period greater than 7 days, while the 
best fit of a Cepheid-like template to the same data would He 
at a period less than 7 days. If the type of fit were to be 
switched every time the solution crossed the 7-day boundary, 
convergence would never be reached. The method adopted 
ensures that at least some reasonable fit will be achieved in a. 
finite number of iterations. 

There are two different ways in which subjective grades 
were applied to candidate variable stars. First, a visual ex- 
amination of the phased fight curve was made to judge 
whether it gives the impression of being “right”—if it did, it 
was assigned light-curve quality class 1. If there was some 
degree of doubt about the reality of the variation, or if the 
variability looked real but there was some suspicion that the 
fitted period was incorrect, it was assigned class 2. If the 
fight curve seemed to be the result of poor data rather than 
physical stellar variability, it was assigned class 3. Second, 
an independent quality scale was based upon the appearance 
of the star in the median-average CCD image: a star having a 
peak clearly distinct from its neighbors was assigned image 
class 1; a star which looked real but was involved in the 
profile of a brighter star was assigned class 2; while a star 
which was hopelessly confused with multiple bright neigh- 
bors or was superimposed on a detector flaw was assigned 
class 3. Figure 2 is a duplicate of the L vs. V plot for only 
those stars that were considered as possible variables either 
by Saha et al. or by the present technique; here I have plot- 
ted the ordinate on a logarithmic scale to compress the top 
and expand the bottom of the diagram for better visibility. 
Symbol types are filled circles for possible and probable 
variables identified in Table 3 of Saha et al., and empty 
circles for additional stars identified by the present algorithm 
for which a visual examination of the fitted fight curve gave 
me a subjective impression of being “right”; in both cases 
large symbols are used when I had assigned both fight-curve 
quality class 1 and image quality class 1, while smaller sym- 
bols represent candidates that had scored at least one 2. All 
stars falling into these two categories are fisted in Table 1. 
The X ’s in Fig. 2 represent stars which met the formal vari- 
ability requirements of 16 and 0.9, but which scored 
at least one 3 in the subjective quality classifications. Among 
the 35 stars with L> 1.7, there are three with at least one 3 
(9%), seven with at least one 2 (20%), and 27 with two l’s 
(77%); most of the 2’s are highly probable long-period vari- 
ables with periods greater than the span of the observations. 
Among the 35 stars with 1.1<L< 1.7 there are seventeen 3’s 
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Fig. 1—Values of the variability index L, defined in the text, vs. apparent 
visual magnitude for all stars measured in all four chips for IC 4182. 

(49%), eleven 2’s (29%), and eight l’s (23%). Among the 38 
stars with 0.9<L<1.1 there are thirty 3’s (79%), seven 2’s 
(18%), and one 1 (3%). 

The present method successfully recovered all but three of 
the 39 variable-star candidates identified by Saha et al. Two 
of these were their stars C3-V5 and C4-V3, for which they 
derived no period, and identified the type as “?” and “Red 
Var.?,” respectively; on my scale these stars had L = 0.410 
and 0.719, and thus fell into the regime where it is difficult to 
regard the variation as statistically significant. The other star 
missed by the present method was C4-V1, identified as 
“Cepheid” by Saha et al. with a period of 3.67 days—my 
use of a large symbol to represent this star in Fig. 2 repre- 

Fig. 2—Values of the variability index L, defined in the text, vs. apparent 
visual magnitude for all stars considered to be possible variables either 
according to the present study or that of Saha et al. (1994). Filled circles 
represent candidate variables identified by Saha et al., while empty circles 
represent candidates identified here for the first time. In each case, larger 
symbols represent variables with a high degree of subjective confidence, 
while smaller symbols are those with a lower degree of confidence. Crosses 
represent stars which were flagged as possible variables, but were rejected 
on the basis of a subjective judgment that the variation was probably spuri- 
ous or that the stellar image was badly contaminated by crowding. 
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Table 1 
Cepheid Parameters Derived from 43 Observations in 1992 

Chip ID <V> </> W (I) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
y 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

49 
314 
330 
576 
572 
358 
337 
249 
336 
334 
592 
393 
355 
350 
412 
245 

94 
465 
426 

88 
28 
46 

162 
155 
229 

63 
537 
142 
197 
535 
167 
161 
250 
150 
208 
390 
177 
187 
66 

515 
377 
476 
391 
400 
792 
561 
653 
600 
639 
558 
537 
372 
365 
223 
432 
759 
234 
707 
726 

99 
514 
156 
129 
158 
152 
708 

62 
78 
67 

454 
181 
493 
504 
517 
377 
658 
260 
297 
188 
578 
190 
109 
235 
106 
76 

133 
358 
640 
672 
119 
592 
174 
91 

742 
651 
119 
383 
215 
748 
355 

86 
560 
572 
121 
185 
162 
307 
129 
327 
152 
266 
580 
351 
134 
662 
173 
529 
329 

33 
354 
758 
658 
235 
367 
489 
249 
528 
345 
359 
595 
307 
252 

12 
9 

11 
2 
8 
4 
1 

10 
3 
7 
6 

42.0 
24.7 

9.20 

7.30 

6.95 

37.5 
6.88 

5 
11 
6 

10 
7 
8 

18 
13 
16 
14 
15 
12 

9 
17 
4 

21.87 
23.29 
24.10 

24.54 

24.47 

36.3 
21.5 
13.3 
2.16 

18.5 

4.26 

10.5 

6.16 
2.63 

22.86 
24.57 

22.36 
22.80 
24.04 
24.2 
22.2 
22.4 
24.98 

24.56 
24.6 
25.13 
23.9 

42.0 

18.0 
37.0 
35.2 
26.8 

1.35 
16.0 
22.0 
20.6 

1.00 

4.34 25.1 

7.12 
7.35 
5.18 

21.19 
22.45 
23.55 

23.75 

23.71 

21.85 
24.00 

5.75 24.65 23.86 

21.57 
22.60 
23.28 

24.59 

23.76 

24.63 

25.3 
22.33 

23.14 
22.70 
22.72 
23.20 
22.9 
23.76 
23.42 
23.36 
23.7 

24.65 
24.85 
24.85 

21.40 

22.77 
21.79 
22.17 
22.25 

23.11 
22.62 
22.31 

24.29 
24.34 
24.51 

8.510 
4.506 
3.045 
2.370 
1.984 
1.789 
1.493 
1.336 
1.329 
1.290 
1.288 
1.190 
1.158 
1.084 
7.260 
2.545 
2.171 
1.922 
1.170 
1.121 
4.864 
3.013 
2.678 
2.578 
2.572 
2.176 
2.063 
1.980 
1.939 
1.888 
1.776 
1.697 
1.451 
1.385 
1.376 
1.239 
1.066 
1.028 
0.410 
6.604 
4.512 
4.153 
4.067 
4.018 
3.334 
3.193 
3.189 
2.924 
2.846 
2.603 
2.057 
1.773. 
1.403 
1.375 
1.345 
1.339 
1.181 
1.136 
1.127 
1.114 
1.029 
1.000 
0.998 
0.963 
0.944 
0.919 

0.46 
0.40 
0.39 
0.28 
0.43 
0.43 
0.30 
0.23 
0.21 
0.44 
0.11 
0.44 
0.43 
0.51 
0.32 
0.32 
0.30 
0.30 
0.38 
0.28 
0.32 
0.36 
0.32 
0.28 
0.14 
0.22 
0.44 
0.41 
0.33 
0.67 
0.40 
0.14 
0.09 
0.50 
0.07 
0.13 
0.30 
0.13 

0.40 
0.18 
0.39 
0.40 
0.37 
0.25 
0.24 
0.33 
0.33 
0.31 
0.21 
0.07 
0.46 
0.30 
0.48 
0.41 
0.33 
0.29 
0.33 
0.44 
0.09 
0.18 
0.41 
0.37 
0.27 
0.17 
0.18 

40.4 
24.7 

9.12 
9.89 
5.80 
7.35 
5.23 
6.96 

34.8 
2.74 

29.5 
3.09 
4.49 
3.03 

35.3 
6.77 
7.74 
5.73 
3.05 
3.23 

48.9 
21.6 
13.1 
2.18 

18.7 
75.0 

4.30 
6.63 

10.6 
417. 

6.12 
2.55 
7.87 
3.33 

53.1 
77.3 

2.73 
2.16 

38.1 
90.5 
18.2 
35.9 
35.0 
27.1 

5.63 
15.1 
23.5 
20.6 

9.85 
4.46 
4.32 

13.7 
3.88 
6.90 
7.50 
5.11 
4.24 
4.11 

55.1 
3.89 

60.4 
2.76 
4.60 
7.08 
3.74 

0.90 
0.28 
0.06 
0.09 
0.04 
0.04 
0.05 
0.08 
I. 25 
0.02 
0.97 
0.02 
0.05 
0.02 
0.85 
0.05 
0.04 
0.04 
0.02 
0.03 
1.80 
0.21 
0.17 
0.01 
0.24 
5.62 
0.02 
0.04 
0.13 

0.06 
0.02 
0.14 
0.02 

II. 0 
5.73 
0.02 
0.01 

0.43 
6.68 
0.15 
0.29 
0.30 
0.74 
0.03 
0.23 
0.29 
0.26 
0.12 
0.04 
0.03 
0.14 
0.02 
0.03 
0.05 
0.05 
0.03 
0.04 
2.20 
0.06 

13.3 
0.02 
0.05 
0.09 
0.04 

21.95 
23.21 
23.96 
24.15 
24.62 
24.55 
25.20 
24.49 
24.49 
25.80 
22.90 
25.27 
25.12 
25.68 
22.69 
24.20 
24.19 
24.41 
25.23 
25.04 
22.41 
22.87 
24.00 
24.08 
22.19 
22.33 
24.96 
24.32 
24.54 
24.36 
24.97 
23.70 
22.92 
25.43 
22.24 
22.12 
25.34 
23.55 
24.44 
22.40 
20.40 
23.16 
22.65 
22.79 
23.18 
22.70 
23.51 
23.44 
23.39 
23.52 
21.74 
24.91 
23.77 
25.24 
24.59 
24.62 
24.82 
24.99 
25.12 
21.46 
24.19 
24.84 
25.47 
25.09 
24.47 
24.97 

0.01 
0.01 
0.02 
0.01 
0.03 
0.02 
0.03 
0.02 
0.02 
0.05 
0.01 
0.05 
0.03 
0.05 
0.01 
0.02 
0.01 
0.02 
0.04 
0.03 
0.01 
0.01 
0.02 
0.02 
0.01 
0.01 
0.02 
0.02 
0.02 
0.27 
0.03 
0.02 
0.01 
0.05 
0.02 
0.01 
0.04 
0.02 
0.03 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.02 
0.01 
0.01 
0.01 
0.02 
0.01 
0.03 
0.02 
0.04 
0.02 
0.02 
0.02 
0.03 
0.04 
0.01 
0.02 
0.08 
0.04 
0.03 
0.02 
0.04 

21.43 
22.60 
23.63 
23.23 
23.83 
23.77 
24.76 
23.87 
24.04 
25.70 
22.74 
24.73 
24.16 
25.15 
21.92 
23.96 
23.62 
23.87 
24.70 
24.20 
21.41 
22.44 
23.34 
24.13 
22.20 
20.26 
24.61 
24.30 
23.99 
21.79 
24.47 
23.69 
23.25 
24.44 
22.78 
20.62 
25.24 
23.43 
24.42 
21.69 
20.53 
22.90 
22.01 
22.17 
22.46 
23.22 
22.97 
22.74 
22.67 
23.71 
22.17 
24.70 
23.19 
24.85 
24.11 
24.35 
24.51 
24.33 
24.80 
19.96 
24.10 
24.33 
24.87 
24.66 
23.92 
22.76 

0.02 
0.04 
0.07 
0.05 
0.10 
0.13 
0.21 
0.10 
0.14 
0.72 
0.07 
0.28 
0.14 
0.30 
0.04 
0.14 
0.06 
0.11 
0.23 
0.15 
0.06 
0.13 
0.12 
0.15 
0.03 
0.01 
0.19 
0.10 
0.08 
0.03 
0.14 
0.14 
0.07 
0.38 
0.05 
0.01 
0.23 
0.08 
0.30 
0.03 
0.02 
0.04 
0.04 
0.04 
0.04 
0.13 
0.05 
0.05 
0.05 
0.14 
0.04 
0.23 
0.05 
0.41 
0.13 
0.16 
0.18 
0.17 
0.22 
0.01 
0.22 
0.13 
0.19 
0.19 
0.11 
0.07 

0.854 
0.195 
0.358 
0.450 
0.601 
0.505 
0.564 
0.401 
0.942 
0.863 
0.866 
0.997 
0.648 
0.775 
0.409 
0.505 
0.389 
0.251 
0.784 
0.857 
0.015 
0.003 
0.690 
0.615 
0.068 
0.012 
0.402 
0.070 
0.482 
0.541 
0.766 
0.648 
0.598 
0.725 
0.260 
0.250 
0.878 
0.781 

0.237 
0.002 
0.279 
0.112 
0.057 
0.504 
0.450 
0.358 
0.294 
0.628 
0.908 
0.869 
0.717 
0.526 
0.779 
0.477 
0.050 
0.309 
0.832 
0.703 
0.057 
0.368 
0.339 
0.672 
0.656 
0.436 
0.943 

21.3 
13.3 
42.5 
18.8 
11.5 
17.4 
14.8 
42.3 
30.2 

3.07 
18.9 
10.9 
3.80 

11.8 
14.2 
2.29 

20.7 
23.8 
11.6 
6.18 

17.7 
5.54 

26.1 
10.5 
37.2 
38.9 
15.5 
21.9 
21.2 

303. 
7.77 
7.56 
2.44 
4.99 

15.0 
57.3 
19.2 
17.1 

7.25 
20.2 
27.7 
17.4 
15.4 
16.7 
3.70 

30.7 
11.5 
16.1 
6.71 
5.00 
2.21 

38.4 
25.5 

7.98 
15.3 
9.64 
3.86 
5.66 

37.4 
3.31 
2.12 

10.7 
3.89 
3.57 

17.1 

1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
2 
1 
1 
1 
2 
1 
1 
2 
1 
2 
2 
2 
2 

1 
2 
1 
1 
1 
1 
2 
1 
1 
1 
2 
2 
1 
1 
1 
1 
1 
1 
2 
1 
2 
2 
2 
2 
2 
2 
2 
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Table 1 
(Continued) 

Chip x y ID P (V) (I) L A P er {V) a (I) <7 Ä2>1 P2 Q 

4 142 103   0.911 0.20 38.9 4.11 24.83 0.03 22.81 0.04 0.328 16.8 2 
4 186 724 2 5.84 24.80 24.43 0.911 0.26 5.84 0.04 24.79 0.02 24.39 0.12 0.024 32.0 1 
4 192 283 3 ••• 24.2 ••• 0.719   21.10 0.01 19.31 0.01   
4 24 153 1 3.67 24.83 24.74 0.529   25.35 0.05 25.20 0.14   

sents the previous authors’ confidence in the detection, as I 
have not independently derived a period and light curve for 
this star. In the present analysis the star at the position of 
C4-V1 had an L value of 0.529. Among the 26,937 stars in 
my sample that appeared in at least 16 frame pairs, 705 had 
L values larger than 0.529, so in some sense this star could 
be regarded as a physical variable at the 97.4% confidence 
level. However, the increasingly high rate of false detections 
in comparison with the frequency of good-quality variables 
as L decreases suggests that in a Bayesian sense the statisti- 
cal significance of the variation in C4-V1 is much lower than 
this. The relatively short period inferred for this star opens 
the possibility that it has simply been possible to find a per- 
mutation of the observed magnitudes which can produce the 
appearance of a reasonable light curve from random noise. 
All the remaining 36 variable candidates identified by Saha 
et al. had L indices from the present analysis equal to 0.911 
or greater, based on the 43 images from 1992. 

Table 1 summarizes the light-curve parameters for all 
high- and medium-confidence variable candidates based on 
the 43-frame analysis. Here, columns 1, 2, and 3 give, re- 
spectively, the chip and the (x,y) coordinates where the vari- 
able candidate may be found (in the coordinate system of the 
first exposure of the field, W0UA0101T, obtained 1992 
January 27 02:47:17 UT); columns 4, 5, 6, and 7 list the 
identification number, period, and visual and infrared mag- 
nitudes assigned by Saha et al.; L is the variability index 
defined in the previous section; and A is the fitted 
fundamental-harmonic visual semiamplitude. These are fol- 
lowed by the period and flux-weighted mean visual and in- 
frared magnitudes derived from the present analysis, along 
with their formal standard errors. Finally, R2,i is the ratio of 
the score of the second-best light-curve fit to that of the best 
fit, as described above; P2 is the value of the second-best 
period, and Q is a summary of the subjective light-curve and 
image-quality scores—the larger of the two is given in the 
table. Individual candidates are listed in order of decreasing 
L value, chip by chip. 

Figure 3 shows a comparison of the periods found by 
Saha et al. with those determined here, for stars in common. 
The two wildly discrepant points at the left-hand side of the 
figure are their stars C4-V12 and C4-V13, which they iden- 
tified as possible eclipsing binaries with periods of 1.00 and 
1.35 days, respectively. The present reductions were not per- 
mitted to consider trial periods shorter than 2 days, so 
alternative—likely spurious—periods within the allowed 
range were settled on instead. Apart from these two, the only 
candidate variable for which I find an optimum period sig- 
nificantly different from that of Saha et al. is their star C3- 
V12, for which they obtain P = 36.3 days, while I estimate 

P = 48.9± 1.8 days. Figure 4 shows my reduced visual mag- 
nitudes for this star phased on both periods; the 49-day pe- 
riod seems at least as plausible as the 36-day period. 

Figures 5 and 6 are, respectively, the V- and /-band 
period-magnitude relations for all candidate variables de- 
tected here. The symbol types are for the most part the same 
as in Fig. 2: filled circles are stars found by Saha et al. which 
were independently recovered here, while empty circles are 
candidate variables found here but not by Saha et al., and 
large symbols have subjective quality class 1 while smaller 
symbols have quality class 2. Here, however, H-’s refer 
to stars which were identified as candidate variables by Saha 
et al., but for which they were unable to determine a period, 
while the present analysis did find an acceptable period. In 
each diagram a line segment shows the effect of adopting 
Saha et al.’s period and magnitude for C3-V12, as opposed 
to those found here. The two small filled circles just to the 
left of the middle of the diagram are the two probable eclips- 
ing binaries which may have true periods near 1 day. The 
two large filled circles near log(P)=0.4, V^24 are C3-V2 
and C3-V6 of Saha et al., which they labeled “?” and 
“Eclipsing,” respectively. Some of the other points which 
lie to the left of the main band of the P-L relation may also 
be eclipsing binaries, and one or two may even be Cepheids 
pulsating in an overtone, but note that all have subjective 
quality class 2. The three points which lie far below and to 
the right of the P-L relation are also all of quality class 2; 
they may be blunders, they may have incorrect periods, or 
they may be some other type of variable, such as W Virginis 

Period(Saha et ai.) 

Fig. 3—A comparison of the periods estimated by the automatic algorithm 
of the present study, with those found by Saha et al. A line of unit slope and 
zero intercept is also indicated. 



CEPHEED VARIABLES 861 

Fig. 4—Two alternative phasings of the light-curve data for the probable 
Cepheid C3-V12 (in the system of Saha et al. 1994): (upper panel) phased 
on the period of 36.3 days found by Saha et al.; (lower panel) phased on the 
period of 48.9 days found here. 

stars, perhaps. Note that two of the stars for which Saha et al. 
were unable to assign periods are here placed plausibly close 
to the P-L relation, even though the estimated periods are 
considerably longer than the 46-day observing window— 
these periods were selected out by finding the best match 
possible between the available data string and a part of a 
template light curve. The large (quality class 1) filled circle 
which lies more than a magnitude above the P-L relation at 

Fig. 5—V-band period-magnitude relation for variable candidates in 
IC 4182, based on the periods and flux-weighted mean magnitudes deter- 
mined here. Filled circles represent candidate variables previously identified 
by Saha et al. (1994) while empty circles represent new candidates identi- 
fied here. In each case, larger symbols represent variables with a high degree 
of subjective confidence, while smaller symbols represent candidates with a 
lower confidence level. Plus signs represent probable long-period variables 
which were identified by Saha et al., but for which they determined no 
periods; they are plotted with the periods and mean magnitudes estimated 
from the present analysis. A line connects the present determinations for the 
variable C3-V12 with those found by Saha et al.; the end of the line segment 
corresponding to the Saha et al. results lies at about the 10 o’clock position 
on the filled circle representing a different variable candidate. 

Fig. 6—Same as Fig. 5, but for the /-band results. 

log(P)=1.27 (P = 18.7±0.24 days) <V) = 22.19±0.01 is C3- 
V8; the values obtained by Saha et al. for this star are vir- 
tually identical: P= 18.5 days, (V) = 22.2. It is therefore pos- 
sible that this star truly is abnormally bright for its period. 
Note, however, that Saha et al. quoted only one decimal 
place for the mean visual magnitude of this star, designated it 
“Cepheid?” and noted “superposed stars?.” However, I 
gave it subjective quality classes “1” for both the appear- 
ance of the light curve and the appearance of the image. 

Apart from the individual stars discussed in the previous 
paragraph, the remaining variable candidates form pleasantly 
tight period-magnitude relationships, including many of the 
quality class 2 variables found here for the first time. The 
diagrams argue plausibly that this technique has been effec- 
tive at finding numerous true Cepheids in IC 4182 with pe- 
riods as short as 2.5 days. Furthermore, the tightness of the 
sequence even at the shortest periods suggests that my afore- 
mentioned makeshift—employing equal-amplitude sinusoids 

log10(P) 

Fig. 7—Period-amplitude relation for the candidate variables in IC 4182, 
based upon results of the present analysis. Symbol types are as in Figs. 5 
and 6. 
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log10(P) 

Fig. 8—Same as Fig. 7, except that here filled squares represent stars lying 
within ±1.25 mag of the mean period-magnitude relation for IC 4182, 
whereas empty triangles represent stars lying outside that range. Again, 
larger symbols represent stars with higher subjective confidence levels, 
smaller symbols those with lower confidence levels. 

for the V- and /-band light curves when the starting guess for 
the period was less than 7 days—has not seriously corrupted 
the derivation of the relevant light-curve parameters. 

Figure 7 is a period-amplitude plot for all the variable 
candidates from the present study; symbol types are as in 
Figs. 5 and 6. Here we see that the new variable candidates 
which were detected here but not listed by Saha et al. (empty 
circles) tend to have either short periods (hence faint appar- 
ent magnitudes) or small amplitudes. The separation is not 
absolute, however: some of the new candidates have proper- 
ties within the range where Saha et al. were successfully 
finding variables. Figure 8 repeats the information in Fig. 7, 
except that here the symbol types have been recoded: filled 

Fig. 9—The period-magnitude relation that would be obtained for IC 4182 
if the second-best period and mean magnitude were adopted for each of 
those candidate variables which has a second solution with a score more 
than half as large as the first solution. Only candidates with A >0.22 mag are 
included in this figure. Line segments connect each point with the position it 
would occupy if the results of its best solution were plotted instead. 

squares represent stars that lie within ±1.25 mag of the 
mean visual P-L relation shown in Fig. 5 (an interval chosen 
specifically to include the anomalously bright variable C3- 
V8), while open triangles represent those stars that lie out- 
side this range. In fact, star C3-V8 is the large filled square at 
log(P)=1.27, A = 0.14—the small perceived amplitude in 
this star provides strong, objective evidence that this star is, 
in fact, blended with one or more comparably bright com- 
panions, as originally suggested by Saha et al. I noted above 
that none of the sample of Milky Way and Magellanic Cloud 
Cepheids that were used to derive the template light curves 
had an amplitude A <0.194; if we were to eliminate from the 
present sample all candidates with A <0.22 we would reject 
C3-V8, plus six of the nine other outlying points (including 
one of the 1 day eclipsing variables) without rejecting any of 
the other quality class = 1 candidates. Among those stars 
that would be retained there are 20 candidates identified here 
but not by Saha et al., ten of them of quality class 1, and one 
long-period variable identified by Saha et al., for which the 
present analysis assigns a guesstimated period of 75 days. 
Only three outliers would be retained in the truncated 
sample: one of them the possible 1.35-day eclipsing binary, 
another a possible ~ 60-day long-period variable or W Vir 
star (chip 4, x= 156, y = 345). 

One disturbing feature of the period-amplitude diagram 
is the abundance of candidate variables in IC 4182 with pe- 
riods less than 10 days and fundamental-harmonic visual 
semiamplitudes A >0.4 mag—a region of the plane com- 
pletely empty in the calibrating sample of Galactic and Ma- 
gellanic Cloud Cepheids (Appendix, Fig. 22 below). If upon 
further investigation this anomaly should persist, it might 
suggest some fundamental difference between the Cepheid 
populations of IC 4182 and the calibrating galaxies. In the 
worst of all possible cases, this might call into question the 
universality of the Cepheid period-luminosity relation. 

Figure 9 illustrates how the visual P-L relation would ap- 
pear if the period and mean magnitude of the second-best fit 
were used for each variable which had R2^0.5. In this plot, 
points represent only those stars which had A >0.22, and the 
size of the circle is proportional to R2 \. A line segment 
connects each point to the period and mean magnitude de- 
rived from the best fit. It is seen that the almost universal 
tendency is for the second-best solution to lie farther from 
the mean P-L relation than the best, even when jR2,i is close 
to unity (the largest dots). The one notable exception is the 
star C3-V2, labeled “?” by Saha et al., which is most prob- 
ably an eclipsing binary or first overtone Cepheid with 
a period of 2.2 'days (according to both this study and Saha 
et al.) or, barely possibly (P2>1=0.615), it is a fundamental- 
mode Cepheid with a period of 10.5 days if the second-best 
solution is adopted—but probably not. I conclude that the 
fit-scoring scheme outlined above is quite effective at choos- 
ing the best period from the list of available possibilities for 
each star. 

The photometry of all detected stars, and the template- 
fitting analysis of all detected variable candidates, was re- 
peated on the basis of all 47 available observations of the 
galaxy, including the cosmic-ray split V and I pairs from 
1993 January 24. The results of this analysis are reported in 
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Table 2 
Cepheid Parameters Derived from 47 Observations in 1992-1993 

Chip ID <V> </> (V) (I) *2,1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

49 
314 
330 
576 
572 
358 
336 
249 
337 
355 
393 
334 
350 
592 
412 

94 
245 
465 
426 

28 
162 
46 

229 
63 

142 
537 
155 
197 
535 
161 
167 
250 
390 
152 
150 
208 
177 
187 
659 
171 
66 

515 
391 
400 
377 
476 
639 
792 
561 
653 
600 
558 
537 
372 
432 
223 
759 
156 
708 
152 
365 
726 
707 
514 

99 

62 
78 
67 

454 
181 
493 
377 
517 
504 
188 
297 
658 
578 
260 
190 
235 
109 
106 
76 

358 
672 
640 
592 
174 
742 

91 
119 
651 
119 
215 
383 
748 
560 
242 
355 

86 
572 
121 
308 
483 
185 
162 
327 
152 
307 
129 
662 
266 
580 
351 
134 
173 
529 
329 
758 
354 
658 
345 
252 
307 

33 
489 
367 
528 
249 

3 
1 

12 
11 
9 
8 
4 

1 
2 

10 
3 
6 
7 

42.0 
24.7 
9.20 

7.30 

6.95 

21.87 21 
23.29 22 
24.10 23 

37.5 

6.88 
5.75 

36.3 
13.3 
21.5 
18.5 

4.26 
2.16 

10.5 

2.63 
6.16 

5 
11 
7 
8 
6 

10 
15 
18 
13 
16 
14 
12 

5 
9 

17 

24.54 23 

24.47 23 

24.98 
24.2 
24.56 
24.6 
23.9 
25.13 

42.0 
37.0 
35.2 

18.0 
20.6 
26.8 

1.35 
16.0 
22.0 

1.00 

4.34 
7.12 

22.86 21 

24.57 24 
24.65 23 

22.36 21 
24.04 , 23 
22.80 22 
22.2 
22.4 

24 

23 

9 

6 

24 63 

25.3 
22.33 2 
22.70 
22.12 22 

23.14 
23.36 
23.20 
22.9 
23.76 
23.42 
23.7 

25.1 
24.65 

7.35 24.85 

7.855 
4.310 
2.614 
2.201 
1.876 
1.701 
1.445 
1.329 
1.317 
1.290 
1.236 
1.180 
1.100 
1.088 
6.994 
1.961 
1.876 
1.846 
1.109 
5.032 
2.686 
2.654 
2.456 
2.436 
2.144 
1.862 
1.853 
1.727 
1.721 
1.366 
1.360 
1.357 
1.352 
1.324 
1.312 
1.206 
1.117 
1.032 
0.946 
0.910 
0.394 
6.002 
4.507 
4.141 
4.141 
3.723 
3.055 
3.052 
2.951 
2.948 
2.584 
2.257 
1.847 
1.739 
1.607 
1.484 
1.416 
1.315 
1.304 
1.266 
1.209 
1.154 
1.100 
1.032 
1.027 

0.46 
0.39 
0.39 
0.28 
0.42 
0.43 
0.21 
0.24 
0.30 
0.40 
0.44 
0.41 
0.50 
0.16 
0.32 
0.29 
0.33 
0.30 
0.38 
0.32 
0.32 
0.37 
0.15 
0.35 
0.41 
0.44 
0.28 
0.33 
0.67 
0.16 
0.41 
0.08 
0.15 
0.04 
0.50 
0.07 
0.30 
0.13 
0.16 
0.14 

0.40 
0.40 
0.38 
0.20 
0.39 
0.32 
0.25 
0.10 
0.33 
0.33 
0.23 
0.07 
0.46 
0.40 
0.48 
0.33 
0.43 
0.41 
0.16 
0.30 
0.45 
0.32 
0.20 
0.15 

40.5 
25.2 

9.19 
10.1 
5.82 
7.31 

35.0 
7.05 
5.18 
4.42 
3.10 
2.70 
3.01 

85.7 
34.1 
7.76 
7.00 
5.73 
3.05 

50.1 
12.9 
21.4 
18.9 

102. 
6.64 
4.30 
2.18 

10.7 
413. 

7.80 
6.30 
8.10 

92.1 
11.8 
3.31 

53.1 
2.73 
2.16 
2.58 

92.6 

42.0 
35.8 
35.6 

105. 
18.2 
20.4 
26.9 

4.04 
15.2 
23.5 

6.66 
4.50 
4.36 
7.04 
3.82 
7.48 

62.4 
87.0 

6.81 
13.7 
4.01 
4.26 
3.95 

82.7 

0.90 
0.06 
0.01 
0.01 
0.00 
0.01 
0.44 
0.06 
0.01 
0.00 
0.00 
0.00 
0.01 
1.06 
0.04 
0.04 
0.01 
0.04 
0.01 
0.11 
0.06 
0.18 
0.05 
0.42 
0.02 
0.02 
0.01 
0.03 

0.01 
0.01 
0.01 
5.72 
0.22 
0.00 

11.0 
0.01 
0.01 
0.02 
9.11 

0.44 
0.04 
0.29 
2.22 
0.15 
0.12 
0.17 
0.01 
0.04 
0.29 
0.04 
0.01 
0.00 
0.04 
0.00 
0.01 
0.67 
4.18 
0.11 
0.14 
0.00 
0.01 
0.00 
6.76 

21.95 
23.22 
23.97 
24.15 
24.61 
24.56 
24.49 
24.47 
25.22 
25.13 
25.26 
25.79 
25.66 
22.97 
22.69 
24.19 
24.20 
24.41 
25.23 
22.41 
24.02 
22.86 
22.19 
22.48 
24.32 
24.96 
24.08 
24.54 
24.36 
23.74 
24.97 
22.92 
22.19 
20.53 
25.43 
22.24 
25.32 
23.54 
25.24 
22.46 
24.46 
22.32 
22.64 
22.79 
20.40 
23.16 
23.38 
23.19 
22.58 
23.51 
23.44 
23.48 
21.74 
24.92 
24.57 
25.22 
24.62 
24.85 
24.65 
24.47 
23.77 
25.08 
24.99 
24.20 
21.53 

0.01 
0.01 
0.02 
0.01 
0.03 
0.02 
0.02 
0.02 
0.03 
0.03 
0.04 
0.04 
0.05 
0.04 
0.01 
0.01 
0.02 
0.02 
0.04 
0.01 
0.02 
0.01 
0.01 
0.02 
0.02 
0.03 
0.02 
0.02 
0.27 
0.02 
0.03 
0.01 
0.02 
0.01 
0.05 
0.02 
0.04 
0.02 
0.03 
0.02 
0.03 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.02 
0.01 
0.01 
0.02 
0.01 
0.03 
0.02 
0.03 
0.02 
0.04 
0.03 
0.02 
0.02 
0.04 
0.03 
0.02 
0.02 

21.43 
22.60 
23.61 
23.26 
23.84 
23.74 
24.10 
23.86 
24.82 
24.22 
24.55 
25.75 
25.07 
22.74 
21.91 
23.63 
23.81 
23.87 
24.74 
21.56 
23.42 
22.47 
22.17 
20.29 
24.27 
24.61 
24.13 
24.00 
21.79 
23.78 
24.52 
23.19 
20.65 
20.80 
24.80 
22.78 
24.87 
23.43 
23.73 
20.94 
24.57 
21.64 
21.97 
22.20 
20.52 
22.90 
22.64 
22.45 
22.90 
22.98 
22.74 
23.60 
22.18 
24.66 
24.00 
23.82 
24.30 
24.24 
22.57 
24.00 
23.19 
24.73 
24.27 
24.13 
19.98 

0.02 
0.04 
0.06 
0.04 
0.08 
0.08 
0.13 
0.08 
0.18 
0.14 
0.23 
0.68 
0.29 
0.05 
0.03 
0.06 
0.13 
0.10 
0.20 
0.05 
0.10 
0.05 
0.03 
0.01 
0.08 
0.18 
0.14 
0.07 
0.03 
0.11 
0.11 
0.05 
0.01 
0.02 
0.27 
0.05 
0.18 
0.08 
0.07 
0.01 
0.16 
0.03 
0.03 
0.04 
0.02 
0.04 
0.04 
0.04 
0.08 
0.04 
0.04 
0.15 
0.04 
0.14 
0.11 
0.21 
0.11 
0.12 
0.04 
0.11 
0.05 
0.19 
0.13 
0.16 
0.01 

0.855 
0.829 
0.560 
0.472 
0.627 
0.724 
0.978 
0.530 
0.522 
0.566 
0.897 
0.759 
0.788 
0.954 
0.980 
0.182 
0.581 
0.304 
0.776 
0.955 
0.930 

0.651 
0.716 
0.040 

0.609 
0.741 
0.034 
0.373 
0.501 
0.453 
0.527 
0.509 
0.737 
0.264 

0.778 
0.602 
0.182 

0.810 
0.848 
0.656 
0.563 
0.277 
0.942 
0.976 
0.914 
0.698 

0.949 
0.544 
0.564 
0.372 
0.652 
0.061 
0.961 
0.865 
0.595 
0.528 
0.621 
0.850 
0.048 
0.164 

21.3 
27.1 
10.4 
18.6 
11.7 
7.82 

29.8 
44.7 
14.7 
9.86 
9.66 
7.92 

11.6 
49.0 
37.8 
18.6 
14.6 
21.9 
11.5 
58.7 
14.4 

17.1 
78.8 
19.9 

10.5 
9.82 
6.60 
2.59 

12.7 
7.43 

75.3 
16.3 
2.34 

15.0 

17.1 
3.18 

73.5 

48.0 
39.9 
59.9 
82.6 
27.7 
21.6 
28.6 

2.63 
14.1 

3.26 
3.65 
8.80 

14.8 
19.6 
14.6 
76.9 
69.5 

3.58 
38.4 
11.7 
3.84 
8.17 

324. 

1 
1 
1 
1 
1 
1 
2 
1 
1 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
2 
1 
1 
2 
2 
2 
1 
2 
2 
2 
2 
2 

1 
1 
1 
2 
1 
1 
1 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
2 
1 
1 
2 
2 
2 
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Table 2 
(Continued) 

Chip 

234 235 
525 
190 
731 
129 
311 
142 

337 
270 
448 
359 
212 
103 

186 724 
192 283 
24 153 

ID P (V) (7) L A 

4 5.18 24.85 24.51 0.984 0.29 

24.2 
5.84 24.80 24.43 0.822 

0.710 

5.10 
0.975 0.17 117. 
0.948 0.41 
0.929 0.40 
0.921 0.37 
0.916 0.23 
0.915 0.20 

4.03 
4.34 
2.76 
5.71 

38.9 

(V) </> *2,1 
0.02 24.82 0.02 24.52 0.16 0.391 10.2 

14.8 23.87 0.04 22.24 0.04 0.737 
0.02 
0.01 
0.00 
0.04 
4.09 

25.13 
24.97 
25.47 
24.68 
24.83 

0.05 
0.04 
0.04 
0.02 
0.03 

23.48 
24.66 
24.76 
24.36 
22.81 

0.12 
0.19 
0.18 
0.11 
0.04 

3.67 24.83 24.74 0.523 

24.74 0.03 24.30 0.12 
21.10 0.01 19.31 0.01 
25.35 0.05 25.20 0.14 

4.77 
1 

0.897 6.98 2 
0.943 3.53 2 
0.292 6.18 2 
0.084 9.23 2 
0.336 16.8 2 

Table 2, where the columns are the same as in Table 1. I 
found the conclusions scarcely changed: the L scores of C3- 
V5, C4-V1, and C4-V3 were 0.394, 0.523, and 0.710, re- 
spectively, so their apparent variability would still appear to 
be statistically insignificant according to the present analysis, 
as they were when it was based on 43 observations. C4-V2 
(identified as “Cepheid” by Saha et al., with a period of 
5.84 days; considered quality class 1 here) has also dropped 
just below the nominal variability limit of 0.900, with L 
decreasing from 0.911 to 0.822; all other Saha variables had 
L in excess of 0.980. Apart from these stars, two quality 
class 2 variables dropped from the sample: (chip, x, y) = (2, 
88, 133) and (4, 158, 595), while five new quality class 2 
candidates appeared: (3, 659, 308), (3, 171, 483), (4, 525, 
337), (4, 190, 270), and (4, 731, 448). It seemed that in 
general the L values decreased overall when the four frames 
from 1993 were added to the 1992 data. I also noticed an 
increased star-to-star scatter among the nonvariable stars in 
the later frames as compared to the earlier. Presumably the 
increased random errors result from the fact that the 1993 
pointing was translated by some 146 pixels (^15 arcsec) 
and rotated by 3.7 deg relative to the 1992 observations, 
coupled with a less-than-perfect modeling of the spatial 
variation of the PSF. The larger standard errors of the 1993 
magnitudes reduced the formal significance level of most 
detected variables. 

The addition of the 1993 epoch yields a revised period of 
50.1 ±0.1 days for variable candidate (3, 28, 358) = C3- 
VI2, which supports the period of 48.9±1.8 days found 
above, rather than the 36-day period reported by Saha et al. 
The differences between the period found here based on 47 
observations and those based on 43 observations for all can- 
didates are summarized in Fig. 10. It is seen that the vast 
majority of periods have not changed significantly. It is also 
seen that the present algorithm tends systematically to under- 
estimate the true periods of variables with periods longer 
than the time span of the observations. This is reasonable: 
with the string-length test not permitted to attempt trial peri- 
ods longer than the time baseline of the observations, the 
iterated template fits must necessarily approach the vari- 
able’s true period from below. The convergence criterion is 
therefore more likely to be satisfied before the true period is 
reached than after. However, the case of candidate (4, 156, 
345) for which a period of 60.4± 13.3 days was estimated 
from the 46.2-day baseline in 1992, and for which the de- 

rived period became 62.4 ±0.7 days upon addition of the 
1993 epoch, demonstrates that a modest degree of extrapo- 
lation may sometimes be attempted. The two stars on the 
upper part of the unity line which have equal vertical and 
horizontal error bars are (3, 208, 86) and (4, 142, 103); for 
these two, and for a few other stars farther down the line, the 
rotation and translation between the 1992 and 1993 epochs 
shifted them off their chips, so no 1993 data were available. 
(I made no attempt to determine whether these stars had been 
shifted onto some other chip, so that I would not have to 
address the question of possible differences in the chip-to- 
chip zero points, or the possibility of different systematic 
errors in the various point-spread functions. Note that the L 
indices and the <j’s for these stars may differ slightly in the 
two analyses, because the estimate of the standard errors— 
and hence, the relative weights—of the instrumental magni- 
tudes have been influenced by the scatter found for constant 
stars, which was slightly different in the two analyses.) 

Light curves for the five stars in Fig. 10 which lie off the 

Period(43 observations) 

Fig. 10—A comparison of the periods found when all 47 observational 
epochs were included in the solution, with the results obtained when only 
the 43 epochs from 1992 are used. Error bars are plotted with every point, 
but in most cases they are lost within the symbol. A line with zero intercept 
and unit slope is plotted as well. 
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1 592 260 

(d) phase 

(b) phase 

Fig. 11—Alternative phasings for five variable stars for which the 43-epoch 
and 47-epoch solutions were significantly different. In each panel, data from 
all 47 epochs are plotted, but in the upper panels periods derived from the 
43-epoch solution are assumed, while in the lower panel the periods from 
the 47-epoch solution are adopted. Each point is plotted twice, and filled 
circles represent V-band data, while empty squares represent 7-band data; 
smaller symbols represent observations from the 1993 revisit, (a) Candidate 
(1, 592, 260). (b) Candidate (3, 161, 215). (c) Candidate (4, 561, 580). (d) 
Candidate (4, 558, 173). (e) Candidate (4, 708, 252). 

unity line and have P(43 observations)<50 days, are illus- 
trated in Figs. 11 (a)-11(e). In each case, the data from all 
available frames are plotted, but they are phased according 
to (upper) the 43-observation light-curve parameters, and 
(lower) the 47-observation light-curve parameters; the 
adopted period is noted near phase 0.5 in each panel. In each 
case, filled circles represent V-band data, and empty squares 
represent /-band data, and magnitudes from the 1993 revisit 

are identified by smaller symbols. In all cases these light 
curves were assigned quality class 2, and it seems to me that 
there is little evidence that any of the periods has been con- 
vincingly demonstrated. 

Finally, Fig. 12 illustrates the derived light curves for all 
variable candidates assigned quality class 1 in the 47- 
observation analysis which were not listed by Saha et al. In 
each case the upper panel portrays the data as a linear se- 
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8650 B660 B670 8680 8600 9010 

(a) phase 

0 0.5 1 1.5 2 
8650 8660 8670 8680 8600 9010 i 1 1 1 1 i 1 1 1 1 r 1 ' 1 il 

0 0.5 1 1.5 2 
(b) phase 

HJD 
8650 8660 8670 8680 8600 9010 

(d) phase 

HJD 

0 0.5 1 1.5 2 

(6) phase 

HJD 
8650 8660 8670 8680 8690 9010 

Fig. 12—Light-curve data for ten high-confidence new variable candidates 
identified in the present study. In each case, the upper panel represents 
brightness as a linear function of time, with a break in the horizontal scale 
between the last 1992 epoch and the 1993 epoch. The lower panel shows the 
same data phased upon the best period for each star given in Table 2; each 
point is plotted twice in this panel, and the best-fitting template light curve 
is shown between phases 0.0 and 1.0. Filled circles represent V-band data 
and empty squares represent 7-band data. Smaller symbols are used for 
individual measurements with uncertainties o(mag)>0.3 mag; error bars 
have been omitted from these observations in the lower panel of each plot, 
to improve the clarity of the figure. 

quence in time, with a break in the horizontal scale between 
the 1992 and 1993 observing seasons, while the lower panel 
shows the data phased according to the best period listed 
in Table 2. Again, filled circles have been used to represent 

V magnitudes, and empty squares represent the I mag- 
nitudes. Low-weight observations, defined as those with 
(^magnitude)>0.30 mag are represented by smaller sym- 
bols, and in each lower panel the error bars have been left 
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HJD 

0 0.5 1 1.5 2 0 0.5 1 1.5 2 

0 0.5 1 1.5 2 
(&) phase 

HJD 
8650 8660 8670 8680 8690 9010 

8650 8660 8670 8680 8690 9010 

0 0.5 1 1.5 2 
8650 8660 8670 8680 8690 9010 

8650 8860 8670 8680 8690 9010 

0 0.5 1 1.5 2 
(©) phase 

HJD 

0 0.5 1 1.5 2 

0 0.5 1 1.5 2 
(f) phase 

Fig. 13—Same as Fig. 12, except for 30 candidate variables with somewhat lower confidence levels, which either were identified here for the first time, or 
were identified by Saha et al. (1994), but for which they derived no period. In each case, on the vertical scale major ticks are at 1 mag intervals, and minor 
ticks are at 0.2 mag intervals. 
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HJD 
8650 8660 6670 86B0 8690 9010 

HJD 
8650 8660 8670 8680 8690 9010 

8670 8680 8690 9010 

(9) phase 

HJD 
8650 8660 8670 8680 8690 9010 

HJD 
8650 8660 8670 8680 8690 9010 

(h) phase (k) phase 
HJD 

8650 8860 8670 8680 8690 9010 
■ 

•I 

w I ' A À 1 I 

i i i ■ i i 

0 0.5 1 1.5 2 
(Í) phase 

HJD 
8670 8680 8690 9010 

0 0.5 1 1.5 2 
(I) ' phase 

Fig. 13—(Continued) 
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HJD 

0 0.5 1 1.5 2 
8650 8660 8670 8680 8600 9010 

(m) phase 

HJD 
8650 8660 8670 8660 8690 9010 

0 0.5 1 1.5 2 
(n) phase 

HJD 
8650 8660 8670 8680 8690 9010 

8650 8660 8670 8680 8690 9010 

Fig. 13—(Continued) 

off these points for better clarity. In the lower panels each 
point has been plotted twice, and the best-fitting template 
light curve is reproduced between phase = 0.0 and 1.0. 

There is a lot of information in Fig. 12. For instance, note 
that candidate (3, 142, 742), with a period of 6.6 days and a 
sinusoidal light curve, has a (V-Í) color near 0.0, and is 
probably too blue to be a Cepheid. Conversely, candidate (2, 
426, 76), with a period of 3.05 days and also fitted to a 
sinusoidal light curve, is somewhat redder, and furthermore 
the actual data for the star exhibit a steeper rising branch and 
longer, straighter descending branch than a true sinusoid. 
Thus, it is possible that this is an actual 3-day Cepheid. Can- 
didate (2, 94, 235) shows how the inclusion of 7-band data in 
both the candidate identification and the fitting of the tem- 
plate light curve can increase our confidence in the results: 
V- and /-band light curves corresponding to a single period 
and fixed template relations satisfy data in both bandpasses 
at once. This lends credibility to my claim that we can mea- 
sure a precise flux-weighted (I) magnitude, even though ef- 
fectively only two phases of the cycle have been sampled. 

Figure 13 shows the same plots for all candidates which 
were assigned quality class 2 in the present 47-observation 
analysis, and were not listed by Saha et al., or for which they 
gave no period. 

5. SUMMARY 

This paper has presented a set of algorithms which is 
designed to identify high-quality variable-star candidates, 
and determine their light-curve parameters in an effective, 
robust, objective, and repeatable fashion. The method is in- 
tended to work as well as can be practically expected on 
small datasets with a moderately high level of contamination. 

A comparison of the results of this algorithm with previ- 
ous work on the same data by a large team of highly expe- 
rienced astronomers suggests that these goals have been met. 
All of the previous researchers’ high-quality candidates have 
been recovered and, with one exception, the same periods 
have been found by a completely impersonal computer 
algorithm—the sole interference on the part of an astronomer 
has been to impose the condition that periods shorter than 2 
days are to be selected against, and amplitudes like those of 
Cepheids are to be preferred to those either much greater or 
much smaller. In the case of the one exception, where a 
significantly different period has been found here than was 
reported before, evidence has been presented that the algo- 
rithm’s derived period is not worse, and may in fact be more 
correct than the previous one. The computer program has 
rejected four of the previous low-quality candidates (in the 
case of the 47-observation analysis; only three were rejected 
when exactly the same 1992 dataset as was used by Saha et 
al. 1994 was subjected to the algorithm), and has presented 
quantitative numerical indices which suggest that the candi- 
dates rejected are not indeed variable at a statistically signifi- 
cant confidence level. At the same time, the computerized 
algorithm has identified approximately ten new high-quality 
candidates and a somewhat larger number of new low- 
quality candidates, with statistical significance levels and 
quality indices within the same range of values as the previ- 
ously known candidates. In a few cases, the algorithm has 
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made not unreasonable estimates of the periods and magni- 
tudes of a few stars for which the previous investigators at- 
tempted no such determinations. It has been shown that ob- 
jectively determined indices, such as the apparent amplitude 
of variation, can be used to separate high- from low-quality 
candidates. One can hope that, with further experimentation, 
such indices may eventually replace—or, at least, supple- 
ment in a major way—subjective quality classes assigned by 
the researcher. Finally, it has been demonstrated that when a 
good-quality light curve is available for one bandpass, a re- 
liable flux-weighted average magnitude can usually be ob- 
tained for a second bandpass even when the phase coverage 
is poor. 

I must stress, however, the reader should note that I am 
not justified in claiming that this computerized algorithm is 
more effective than a team of highly qualified astronomers. It 
was the purpose of Saha et al. to derive a Cepheid-based 
distance to the galaxy IC 4182. To that end, they did not 
need a complete sample of Cepheids; they needed a clean 
sample. This was achieved by rejecting from their sample 
and their publication any variable-star candidate in which 
they did not have absolute confidence. Their decisions were 
based partly on subjective and partly on quantitative criteria 
that were almost certainly quite different in detail from those 
imposed here. We have no way of knowing which or how 
many of the current “new” candidates were considered by 
the previous researchers, and then discarded for valid reasons 
that I have not considered. The most I can claim is that the 
present method has been shown to be competitive with a 
large team of experienced astronomers. 

That said, I believe that certain advantages may be 
claimed for a computerized technique like the present one on 
largely philosophical grounds. (1) It is objective. Every op- 
eration, every decision has been explicitly defined. Once the 
programmer’s personal expertise and prejudice have been 
codified as mathematical equations and logical operations, 
the method works with absolute impartiality. (2) It is repeat- 
able. Given the same data, the same answers will be obtained 
by an expert and a novice. Again given the same data, the 
same answer will be obtained this year as next, which is not 
always the case with a human being. (3) It is quantitative. It 
takes account of the numerical standard error of each mea- 
surement, weighting individual observations and defining 
formal confidence intervals for results with a level of fairness 
hard for a human being to match. (4) It is fast. Extensive 
tests employing large numbers of images to which synthetic 
Cepheids of known properties have been added can be rea- 
sonably undertaken to map out the detailed properties of the 
algorithm; conclusions based on these tests can be used to 
understand quantitatively the incompleteness of the real 
sample. When new data arrive, preliminary estimates of can- 
didate lists and light-curve parameters can be quickly up- 
dated, using exactly the same methods and rules as before. 
(5) It is extensible. Alternate assumptions, alternate thresh- 
olds, alternate decision paths may be defined and applied to 
the same data; the resulting samples can be rigorously inter- 
compared. When a bug is found, it can be corrected, and 
precise quantitative implications for the results of previous 
analyses can be inferred. When our understanding of the de- 

Table 3 
Fourier Coefficients of Cepheid Light Curves 

«2 

a3 

a4 

<*5 

ßl 

ßl 

ßA 

ßs 

-0.210 
±0.010 
-0.102 
±0.011 

0.086 
±0.010 
-0.071 
±0.010 

1.8429 
±0.105 

1.1796 
±0.056 
-0.030 
±0.210 
-2.147 
±0.116 

0.047 
±0.076 

1.164 
±0.093 

-0.091 X -0.333 X2 

±0.063 ±0.086 
-0.218 X +0.058 X2 

±0.064 ±0.089 
-0.034 X 
±0.026 
+0.028 X 
±0.026 

+0.506 
±0.143 

+3.2175 X 
±0.293 

if XC-0.06 

if Xs*—0.06 

if X<—0.06 

if X5=0.06 

7\ 

72 

73 

7a 

*i 

S2 

0.608 
±0.011 

0.109 
±0.011 
-0.078 
±0.011 

0.046 
±0.008 

-0.190 
±0.017 
-1.340 
±0.203 
-1.866 
±0.128 

0.007 
±0.277 
-2.946 
±0.178 
-0.413 
±0.168 

-0.022 
±0.032 
+0.106 
±0.032 
-0.058 
±0.032 

-0.254 X 
±0.052 

+0.127 X 
±0.349 

+4.823 X 
±0.491 

if X<—0.06 

if XSs—0.06 

if X<—0.06 

if X^—0.06 

fining properties of Cepheids changes, the templates and se- 
lection criteria can be adjusted accordingly, and the analysis 
easily reperformed. One can envision the method gradually 
improving in proportion to the accumulated experience of 
many researchers. 

I am grateful to Doug Welch, Nancy Silbermann, Barry 
Madore, Wendy Freedman, Horace Smith, Don Femie, 
and the anonymous referee for their contributions to this 
work. In particular, this paper owes much to the excellent 
World-Wide Web sites managed by Doug Welch (http:// 
www.physics.mcmaster.ca/Cepheid/HomePage.html) and 
Don Femie (http://ddo.astro.utoronto.ca/cepheids.html). 

APPENDIX: DEFINING THE TEMPLATE LIGHT 
CURVES 

Since Cepheid light curves are periodic and extremely 
repeatable (except in the case of multiple-mode variables, 
which will be avoided here) it is convenient to describe them 
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Table 4 
Cepheid Parameters Obtained during Template Derivation 

Name <V> (/> Crv °1 nv 
ni 

Milky Way 

U Aql 
SZ Aql 
TT Aql 
rj Aql 

SY Aur 
RX Aur 

RW Cam 
RW Cas 
SZ Cas 
XCyg 

TXCyg 
W Gem 
AA Gem 

C Gem 
Z Lac 
T Mon 

SV Mon 
YOph 
SV Per 
VX Per 
RS Pup 
AQ Pup 

S Sge 
WSgr 
X Sgr 

WZSgr 
RYSco 
Y Set 
Z Set 

RUSct 
SV Vul 

6.451 
8.620 
7.119 
3.894 
9.073 
7.677 
8.672 
9.243 
9.854 
6.383 
9.513 
6.952 
9.723 
3.919 
8.412 
6.133 
8.254 
6.169 
8.981 
9.306 
6.993 
8.758 
5.619 
4.668 
4.564 
8.011 
8.015 
9.621 
9.581 
9.475 
7.206 

0.006 
0.007 
0.009 
0.006 
0.008 
0.006 
0.008 
0.013 
0.005 
0.005 
0.009 
0.006 
0.008 
0.005 
0.008 
0.008 
0.016 
0.004 
0.011 
0.010 
0.011 
0.008 
0.005 
0.006 
0.005 
0.009 
0.007 
0.008 
0.006 
0.012 
0.008 

5.238 
7.022 
5.606 
2.999 
7.806 
6.591 
7.027 
7.709 
8.063 
5.257 
7.135 
5.905 
8.542 
3.049 
7.125 
4.954 
7.085 
4.483 
7.625 
7.836 
5.419 
7.085 
4.743 
3.849 
3.670 
6.536 
6.225 
7.697 
8.069 
7.297 
5.622 

0.024 
0.054 
0.035 
0.025 
0.028 
0.021 
0.024 
0.028 
0.017 
0.018 
0.033 
0.029 
0.020 
0.020 
0.029 
0.054 
0.038 
0.017 
0.029 
0.025 
0.047 
0.051 
0.021 
0.025 
0.020 
0.037 
0.035 
0.022 
0.027 
0.039 
0.029 

7.0243 
17.1399 
13.7539 
7.1767 
10.1445 
11.6250 
16.4158 
14.7874 
13.6396 
16.3860 
14.7153 
7.9133 
11.2935 
10.1543 
10.8847 
27.0055 
15.2476 
17.1341 
11.1274 
10.8829 
41.5256 
30.0124 
8.3822 
7.5946 
7.0125 
21.8451 
20.3142 
10.3397 
12.9039 
19.6985 
44.9629 

0.0007 
0.0040 
0.0022 
0.0004 
0.0017 
0.0016 
0.0019 
0.0022 
0.0019 
0.0017 
0.0018 
0.0008 
0.0022 
0.0019 
0.0016 
0.0077 
0.0068 
0.0029 
0.0030 
0.0030 
0.0224 
0.0214 
0.0008 
0.0004 
0.0004 
0.0057 
0.0055 
0.0017 
0.0014 
0.0035 
0.0203 

0.319 
0.485 
0.449 
0.332 
0.293 
0.278 
0.341 
0.481 
0.202 
0.422 
0.450 
0.348 
0.286 
0.220 
0.386 
0.425 
0.472 
0.216 
0.365 
0.296 
0.435 
0.453 
0.322 
0.337 
0.276 
0.476 
0.375 
0.315 
0.403 
0.476 
0.412 

0.040 
0.031 
0.062 
0.042 
0.036 
0.029 
0.048 
0.075 
0.022 
0.054 
0.066 
0.032 
0.049 
0.029 
0.060 
0.038 
0.086 
0.023 
0.059 
0.057 
0.051 
0.037 
0.034 
0.037 
0.030 
0.059 
0.039 
0.058 
0.040 
0.085 
0.046 

0.019 
0.043 
0.067 
0.022 
0.026 
0.031 
0.056 
0.139 
0.047 
0.067 
0.060 
0.036 
0.041 
0.026 
0.030 
0.061 
0.073 
0.025 
0.088 
0.069 
0.053 
0.066 
0.032 
0.027 
0.042 
0.078 
0.044 
0.045 
0.057 
0.089 
0.049 

39 
21 
36 
46 
22 
27 
49 
50 
28 
130 
45 
30 
38 
34 
38 
23 
25 
39 
32 
31 
21 
30 
43 
39 
44 
37 
29 
46 
50 
31 
34 

39 
21 
36 
46 
22 
27 
49 
50 
28 
130 
45 
30 
38 
34 
38 
23 
25 
39 
32 
31 
21 
30 
43 
39 
44 
37 
29 
46 
50 
31 
34 

LMC 

HV 874 
HV 877 
HV 879 
HV 899 
HV 900 
HV 909 
HV 953 
HV 955 
HV 971 
HV 997 

HV 1002 
HV 1005 
HV 1013 
HV 1023 
HV 2257 
HV 2260 
HV 2294 
HV 2301 
HV 2324 
HV 2338 
HV 2352 
HV 2369 
HV 2527 
HV 2549 
HV 2579 
HV 2580 
HV 2733 
HV 2793 
HV 2827 
HV 2836 

14.454 
13.370 
13.334 
13.452 
12.876 
12.799 
12.312 
14.058 
14.497 
14.537 
12.757 
14.027 
13.831 
13.465 
13.048 
14.921 
12.668 
13.947 
14.331 
12.757 
14.172 
12.617 
14.623 
13.702 
13.963 
13.936 
14.685 
14.101 
12.306 
14.608 

0.026 
0.013 
0.016 
0.034 
0.037 
0.039 
0.018 
0.021 
0.029 
0.019 
0.033 
0.025 
0.017 
0.056 
0.024 
0.026 
0.013 
0.013 
0.025 
0.018 
0.020 
0.014 
0.032 
0.012 
0.019 
0.014 
0.012 
0.063 
0.014 
0.022 

12.150 
12.309 
12.542 
11.826 
12.146 
11.386 

13.615 
11.997 

12.847 
12.694 
11.930 
14.072 
11.820 

13.401 
11.781 
13.410 
11.601 

13.166 
14.014 
13.164 
11.088 
13.575 

0.039 
0.058 
0.084 
0.098 
0.080 
0.034 

0.063 
0.040 

0.039 
0.047 
0.073 
0.059 
0.038 

0.047 
0.054 
0.039 
0.038 

0.067 
0.040 
0.055 
0.032 
0.078 

12.6820 
45.1135 
36.8521 
31.0559 
47.2786 
37.1650 
47.9944 
13.7320 
9.2970 
13.1465 
30.4797 
18.7100 
24.1730 
26.6587 
38.7990 
12.9882 
36.5471 
9.4990 
14.3916 
42.1609 
13.6201 
48.3646 
12.9480 
16.1970 
13.4310 
16.9511 
8.7269 
19.1840 
78.5562 
17.4706 

0.0000 
0.0441 
0.0195 
0.0345 
0.4734 
0.7927 
0.0252 
0.0000 
0.0000 
0.0128 
0.0106 
0.0000 
0.0168 
0.0313 
0.1239 
0.0138 
0.0067 
0.0000 
0.0164 
0.0247 
0.0128 
0.0195 
0.0000 
0.0000 
0.0000 
0.0122 
0.0056 
0.0000 
0.2910 
0.0178 

0.467 
0.256 
0.457 
0.504 
0.452 
0.375 
0.393 
0.388 
0.244 
0.412 
0.496 
0.448 
0.350 
0.587 
0.485 
0.335 
0.466 
0.214 
0.391 
0.459 
0.291 
0.456 
0.467 
0.455 
0.418 
0.374 
0.194 
0.409 
0.222 
0.399 

0.110 
0.112 
0.094 
0.155 
0.120 
0.039 
0.118 
0.079 
0.162 
0.050 
0.054 
0.087 
0.054 
0.034 
0.065 
0.070 
0.084 
0.044 
0.082 
0.159 
0.063 
0.087 
0.111 
0.032 
0.072 
0.044 
0.060 
9.999 
0.050 
0.054 

0.000 
0.181 
0.101 
0.135 
0.102 
0.080 
0.100 
0.000 
0.000 
0.069 
0.116 
0.000 
0.106 
0.223 
0.138 
0.102 
0.089 
0.000 
0.062 
0.136 
0.057 
0.089 
0.000 
0.000 
0.000 
0.055 
0.075 
0.170 
0.079 
0.077 

10 
22 
14 
9 
7 
6 

24 
9 
9 
9 

13 
9 

15 
8 
9 
8 

31 
10 
9 

20 
10 
29 

8 
8 
9 
9 

20 
4 

13 
7 

0 
22 
14 
9 
7 
6 

24 
0 
0 
9 

13 
0 

15 
8 
9 
8 

31 
0 
9 

20 
10 
29 

0 
0 
0 
9 
9 
4 

13 
7 
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Table 4 
(Continued) 

Name <V> </> <TV nv 

HV 2854 
HV 2864 
HV 5497 
HV 6105 
HV 12700 
HV 12815 
HV 12816 
HV 12823 

14.633 
14.628 
11.916 
14.917 
14.849 
13.451 
14.516 
14.569 

0.010 
0.020 
0.007 
0.026 
0.008 
0.018 
0.012 
0.020 

13.928 
13.820 
10.753 

14.037 
12.484 
13.873 

0.063 
0.064 
0.016 

0.032 
0.050 
0.040 

8.6374 
10.9856 
99.7873 
10.4400 
8.1536 

26.1040 
9.1038 
8.3020 

0.0036 
0.0052 
0.0932 
0.0000 
0.0028 
0.0095 
0.0041 
0.0000 

0.242 
0.385 
0.226 
0.299 
0.231 
0.448 
0.305 
0.371 

0.042 
0.058 
0.067 
0.086 
0.035 
0.118 
0.064 
0.070 

0.055 
0.069 
0.059 
0.000 
0.053 
0.092 
0.051 
0.000 

17 
10 
62 

8 
17 
14 
22 

9 

6 
10 
30 
0 
8 

14 
11 
0 

SMC 

HV 817 
HV 823 
HV 824 
HV 829 
HV 834 
HV 836 
HV 837 
HV 840 
HV 843 
HV 847 
HV 854 
HV 856 
HV 857 
HV 863 
HV 865 

HV 1326 
HV 1334 
HV 1338 
HV 1342 
HV 1365 
HV 1695 
HV 1744 
HV 1787 
HV 1873 
HV 1877 
HV 1884 
HV 1954 
HV 2017 
HV 2052 
HV 2063 
HV 2064 
HV 2087 
HV 2088 
HV 2103 
HV 2189 
HV 2195 
HV 2202 
HV 2205 
HV 2209 
HV 2225 
HV 2227 
HV 2230 
HV 2231 
HV 2233 
HV 6320 

13.864 
13.755 
12.370 
11.921 
12.180 
14.785 
13.241 
13.586 
15.037 
13.906 
14.245 
14.886 
14.429 
13.329 
13.112 
14.838 
14.874 
15.103 
14.207 
15.015 
14.723 
14.559 
14.278 
14.847 
13.146 
14.435 
13.864 
14.699 
14.241 
14.749 
13.722 
15.199 
14.663 
15.132 
14.487 
13.009 
14.408 
13.999 
13.553 
14.781 
14.801 
14.658 
13.508 
13.874 
14.832 

0.007 
0.012 
0.006 
0.006 
0.006 
0.017 
0.010 
0.013 
0.020 
0.014 
0.030 
0.020 
0.015 
0.018 
0.008 
0.023 
0.027 
0.019 
0.008 
0.007 
0.018 
0.025 
0.012 
0.023 
0.012 
0.019 
0.018 
0.017 
0.021 
0.014 
0.014 
0.024 
0.010 
0.019 
0.011 
0.012 
0.014 
0.024 
0.006 
0.014 
0.008 
0.020 
0.020 
0.010 
0.013 

13.062 
12.748 
11.395 
11.053 
11.303 

12.327 
12.724 
13.871 
12.923 

12.441 
12.367 

13.493 
14.260 
13.803 
13.774 
13.507 
14.039 
12.177 
13.521 
13.083 
13.938 

12.741 

13.700 

12.127 
13.643 
13.196 
12.871 
13.954 
13.873 
13.797 
12.591 
13.180 
14.133 

0.031 
0.040 
0.027 
0.043 
0.019 

0.044 
0.053 
0.052 
0.052 

0.078 
0.072 

0.022 
0.057 
0.035 
0.056 
0.108 
0.173 
0.060 
0.056 
0.049 
0.071 

0.059 

0.057 

0.038 
0.058 
0.099 
0.028 
0.032 
0.030 
0.049 
0.084 
0.066 
0.041 

18.8984 
31.8877 
65.8572 
85.8151 
73.3750 
9.4034 

42.6483 
33.1165 
14.7348 
27.0935 
15.9530 
12.1553 
11.9829 
28.9201 
33.3075 
13.7274 
9.4514 
8.4934 
17.9507 
12.4115 
14.5800 
12.6201 
16.1804 
12.9248 
49.5681 
18.0905 
16.6993 
11.4118 
12.5750 
11.6620 
33.6694 
9.1592 
14.5778 
8.9841 
13.4591 
41.9100 
13.1951 
25.5197 
22.6470 
13.1450 
12.4679 
12.5178 
36.6686 
15.1647 
10.1006 

0.0044 
0.0219 
0.0128 
0.0843 
0.0243 
0.0000 
0.0133 
0.0065 
0.0344 
0.0096 
0.0000 
0.0000 
0.0000 
0.0203 
0.0119 
0.0000 
0.0000 
0.0000 
0.0076 
0.0016 
0.0091 
0.0078 
0.0105 
0.0063 
0.1012 
0.0165 
0.0127 
0.0016 
0.0000 
0.0000 
0.0121 
0.0000 
0.0013 
0.0000 
0.0000 
0.0325 
0.0022 
0.0163 
0.0045 
0.0053 
0.0018 
0.0069 
0.0244 
0.0023 
0.0026 

0.365 
0.379 
0.365 
0.310 
0.251 
0.392 
0.391 
0.464 
0.330 
0.373 
0.396 
0.315 
0.388 
0.470 
0.450 
0.382 
0.406 
0.387 
0.210 
0.304 
0.297 
0.331 
0.350 
0.402 
0.226 
0.260 
0.310 
0.334 
0.361 
0.313 
0.416 
0.296 
0.374 
0.303 
0.344 
0.359 
0.311 
0.459 
0.293 
0.279 
0.310 
0.279 
0.385 
0.443 
0.417 

0.098 
0.155 
0.061 
0.027 
0.053 
0.061 
0.054 
0.074 
0.059 
0.141 
0.144 
0.067 
0.044 
0.127 
0.025 
0.107 
0.126 
0.061 
0.051 
0.081 
0.083 
0.114 
0.040 
0.061 
0.032 
0.190 
0.099 
0.141 
0.073 
0.046 
0.069 
0.079 
0.058 
0.065 
0.033 
0.066 
0.063 
0.139 
0.031 
0.042 
0.038 
0.049 
0.150 
0.025 
0.097 

0.077 
0.132 
0.085 
0.045 
0.077 
0.000 
0.052 
0.101 
0.262 
0.106 
0.000 
0.000 
0.000 
0.100 
0.153 
0.000 
0.000 
0.000 
0.061 
0.139 
0.065 
0.072 
0.077 
0.108 
0.092 
0.120 
0.079 
0.066 
0.000 
0.000 
0.070 
0.000 
0.089 
0.000 
0.000 
0.094 
0.055 
0.143 
0.064 
0.107 
0.081 
0.030 
0.084 
0.058 
0.075 

52 
34 
62 
19 
62 
11 
23 
31 
11 
24 
11 
9 
8 

16 
15 
12 
12 
11 
37 
48 
18 
16 
13 
10 
12 
21 
16 
31 

9 
9 

22 
9 

24 
9 
9 

22 
21 
17 
23 
15 
23 

7 
16 

8 
35 

34 
22 
34 
16 
31 
0 

20 
21 

3 
13 
0 
0 
0 

10 
10 
0 
0 
0 

25 
16 
18 

8 
5 
2 

12 
8 
9 
7 
0 
0 

12 
0 
9 
0 
0 

14 
6 
9 

15 
8 

11 
4 

10 
5 

24 

in terms of Fourier expansions (e.g., Simon and Lee 1981; 
Moffett and Barnes 1985; Antonello and Poretti 1986; Peter- 
son 1986). It is found empirically that the numerical values 
of the Fourier amplitudes and phases vary in a well-defined 
way with the period of the variable (the “Hertzsprung se- 
quence,” e.g., Ledoux and Walraven 1958). Therefore I have 
adopted Fourier decomposition with amplitudes and phases 

that vary continuously with period as the means of encoding 
our template light curves: 

n 

VW=V0+2 Aj cos[/<«)(0+7;]> 
j= 1 
n 

I(t)=IQ+ 2 Bj cos[/co(i)+<$,]’ 
j=i 
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where co(t) = 2Tr(/>(t) = 2/7r[(t—t0)/P]. 
I selected a sample of 114 Milky Way and Magellanic 

Cloud Cepheids having published photometry in the Johnson 
V and Kron-Cousins or Johnson 7 bandpasses. Only Ceph- 
eids with at least eight observations and lying in the period 
range l^P^ 100 days were considered, because shortward 
of 7 days, overtone and multiple-mode Cepheids complicate 
the picture, while longward of 100 days the period- 
luminosity relation is not well known, so these stars are of 
little interest for distance-scale studies. The actual stars em- 
ployed in this analysis are listed in Table 3. 

In the case of the Milky Way Cepheids studied by Moffett 
and Barnes (1980), it was necessary to convert the 7-band 
magnitudes from the Johnson system to that of Kron and 
Cousins; this was done employing a relation based on results 
reported by Taylor (1986; see his Table 4): 

(R-I) kc= 0.873[(R - 7)mb- 0.008] + 0.049, 

(V-^)kc=0.714(V-R)mb-0.029. 

Neglect of Taylor’s right-ascension-dependent corrections 
will introduce positive and negative systematic errors of less 
than 0.01 mag in absolute value; furthermore, since these 
will affect solely the average magnitudes of the stars, not the 
amplitude or shape of the light curves, they are irrelevant for 
the present application. 

I adopted a five-term expansion for the V light curves, and 
four terms for 7; higher-order models did not materially im- 
prove the fit. Specifically, for the z'th star: 

V/(i)
=V0>/+Af[cos û)+a2 cos(2w+'y2)

+Â3 cos(3û)+y3) 

+a4 cos(4a)+y4)+a5 cos(5w+y5)], 

Ii(t)=h,i+AiVß\ cos(a>+^)+^2 cos(2o)+ <%) 

+#3 cos(3o)+ <%)+/34 cos(4<u+ £4)], 

where (o=w(t) = 2'ir<f>i(t) = 2'jr[(t—t0j)/Pi]. Simulta- 
neous least-squares solutions of these equations determined 
the coefficients of a, ß, y, and S that define the template 
light curves, as well as the five fundamental quantities for 
each Cepheid: V0, 70, A, P, and t0. (The published period 
for each variable star was adopted as a starting guess; the 
least-squares solution was allowed to try to improve upon it.) 
This approach differs slightly from that taken by most pre- 
vious studies, where more typically a low-order Fourier ex- 
pansion was fitted to individual light curves, and then the 
behavior of the various components as a function of period 
was investigated (e.g., Simon and Lee 1981). Here, building 
on the work of these previous investigators, I have begun 
with the assumption that all amplitudes and phases are con- 
tinuous functions of period, with one exception: it has been 
known for some time that the phases of the second and third 
Fourier components go through an abrupt change at a period 
of around 10 days. My own preliminary analysis, which was 
based solely on Cepheids with periods greater than 10 days, 
showed that the amplitudes of both the cos(2o>) and 
cos(3w) terms appeared to extrapolate to zero at almost ex- 
actly the same period just short of 10 days. Of course, if the 
amplitude of a Fourier component is zero, its phase is unde- 
fined, while for Cepheids with periods near the crossover 

Fig. 14—The actual template light curves obtained by the present Fourier 
decomposition of data for Milky Way and Magellanic Cloud Cepheids. The 
model light curves are shown for periods in the range 7-100 days, with an 
increment A log(P)=0.0888 between models, (a) The V-band templates; (b) 
the /-band templates. 

period, the phase of each component is extremely poorly 
constrained. When the amplitudes of the second and third 
Fourier components become significant again below the 
crossover period, it is found that a large, abrupt change in 
their phase has occurred (see, e.g., Simon and Lee’s Figs. 1 
and 4). Therefore my model light curves incorporate a dis- 
continuity in the phase of the second and third Fourier com- 
ponents at log(P)=0.94,P = 8.71 days. By performing simul- 
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taneous Fourier fits to all stars at once, rather than 
individually, I am able to force continuity in the amplitudes 
of the second and third Fourier components as they pass 
through zero, while the phases of these components for pe- 
riods where their amplitudes are approaching zero are 
also forced to be continuous and well defined. The ampli- 
tudes of the fourth and fifth Fourier components do not ap- 
proach zero anywhere in the range 7<P< 100 days, 
([0.84<log(P)<2.0], so a single continuously varying rela- 
tion was imposed for both the amplitude and phase of these 
components, as well as for the first Fourier component of the 
7-band relation. 

With X=log(P)—1, the least-squares solution of these 
equations gives the light-curve parameters listed in Table 3 
and the stellar parameters listed in Table 4. The root-mean- 
square deviation of 2751 individual V-band observations 
from 114 template fits was 0.045 mag; the rms deviation of 
2002 individual 7-band observations from 92 template fits 
was 0.054 mag. Figure 14(a) illustrates the resulting template 
light curves for the period range !<P< 100 days; the verti- 
cal scale is arbitrary (i.e., these templates are taken to apply 
to Cepheids of all amplitudes), and successive curves are 
separated by A log(P)=0.0888. Figure 14(b) shows the 
same for the 7-band light curves. 

Figures 15-18 show the residuals of individual observa- 
tions from the best-fitting template for each star as a function 
of phase for various subsamples. In Fig. 15 the V-band re- 
siduals have been plotted for the present sample of Cepheids 
broken down into four period ranges, while Fig. 16 shows 
the same for the 7-band residuals. While some systematic 
fillips appear at some phases for some periods—most nota- 
bly near just before maximum light for Cepheids with 
10<P<20 days—these are comparatively minor and of the 
same order of magnitude as the intrinsic dispersion. Quite a 
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Fig. 16—Individual I-band fitting residuals vs. phase for all Galactic and 
Magellanic Cloud Cepheids used in the decomposition, divided into four 
intervals of period. 

large number of additional Fourier components would have 
to be added to the model to flatten the residual plots com- 
pletely. Such wiggles as do occur will average out over the 
full cycle, as is required by the least-squares formulation, 
and should have minimal deleterious effect on the estimation 
of periods and mean magnitudes. Together Figs. 15 and 16 
suggest that the fitting residuals owe as much or more to 
random observational errors in the published data, or random 
differences in the light curves of different Cepheids with the 
same period, than they do to systematic inadequacy of the 
templates. 

Figure 17 shows the V-band residuals broken down by 
home galaxy; it seems that the same templates apply equally 
well to the Milky Way and the two Magellanic Clouds. The 
slight bobble in the Milky Way residuals near phase 0.27 
may be due as much to the slightly different distribution of 

Galaxy 

MW 

LMC 

SMC 

phase 

Fig. 15—Individual V-band fitting residuals vs. phase for all Galactic and 
Magellanic Cloud Cepheids used in the decomposition, divided into four 
intervals of period. 

Fig. 17—Individual V-band fitting residuals vs. phase for all Galactic and 
Magellanic Cloud Cepheids used in the decomposition, divided according to 
parent galaxy. 
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Fig. 18—Individual V-band fitting residuals vs. phase for all Galactic and 
Magellanic Cloud Cepheids used in the decomposition, divided into three 
intervals of amplitude. 

Cepheids over period in the different samples as to any in- 
trinsic difference at fixed period. Figure 18 shows the same 
V-band residuals divided according to the first-harmonic vi- 
sual semiamplitude, A ; dividing points were chosen to place 
36 variables in each subsample. Again, the structure seen in 
the diagram for the variables with the largest amplitude may 
be due to nonuniform filling of the period-amplitude plane 
(see below), rather than to any true amplitude dependence of 
the pulsation cycle. Even if there is a real amplitude effect, it 
is small enough that it should not jeopardize a useful em- 
ployment of these templates. 

Figures 19-21 show the raw data and the fitted template 
light curves for three stars showing, respectively, typical, 

Fig. 20—Actual data and fitted template light curves for the Galactic vari- 
able Y Oph, which illustrates fitting errors for my best case. Filled circles 
are V-band data and empty squares are /-band data. 

minimum, and maximum root-mean-square residuals. RW 
Cam had normalized rms residuals of 0.048 and 0.056 mag 
in V and /, respectively—as close to the overall sample 
mean as any star with a reasonable number of observations 
(49 in each bandpass). Y Oph had rms residuals of 0.023 and 

Fig. 19—Actual data and fitted template light curves for the Galactic vari- 
able RW Cam, which illustrates fitting errors for a typical case. Filled circles 
are V-band data and empty squares are /-band data. 

Fig. 21—Actual data and fitted template light curves for the SMC variable 
HV 1884, which illustrates fitting errors for my worst case. Filled circles are 
V-band data and empty squares are /-band data. 
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Fig. 22—The period-amplitude relation for all Galactic and Magellanic 
Cloud Cepheids employed in the present template determination. Large 
empty circles represent Cepheids in the Galaxy, smaller filled circles repre- 
sent those in the LMC, while plusses represent those in the SMC. 

0.025 mag in the two bandpasses and was the best-fit star, 
while the worst-fit star, the SMC variable HV 1884, had rms 
residuals of 0.19 and 0.12 mag; Fig. 21 suggests that this is 
due mostly to large observational errors in a few data points. 

Finally, Fig. 22 shows the period-amplitude plane for the 
Milky Way and Magellanic Cloud Cepheids used to define 
the template relations. Here empty circles represent variables 
in the Galaxy, filled circles are for the LMC, and “ + ” signs 
are for the SMC. Besides serving as a basis of reference for 
the distribution of periods and amplitudes found in other 
galaxies, this diagram has the noteworthy feature that there 
appears to be a deficiency of long-period, low-amplitude 
Cepheids in the Galactic sample. Quite possibly this is a 

selection effect: it could be that the Magellanic Clouds, with 
their comparatively small angular extent, have been more 
effectively searched for long-period, low-amplitude variables 
than the plane of the Galaxy, which covers almost a third of 
the sky and is beset with extinction problems. The prepon- 
derance of Galactic Cepheids with largish amplitudes and 
periods in the range 10<P<25 days may account in part or 
in full for the apparent systematic departures seen in the top 
panel of Fig. 17 and the bottom panel of Fig. 18. 
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